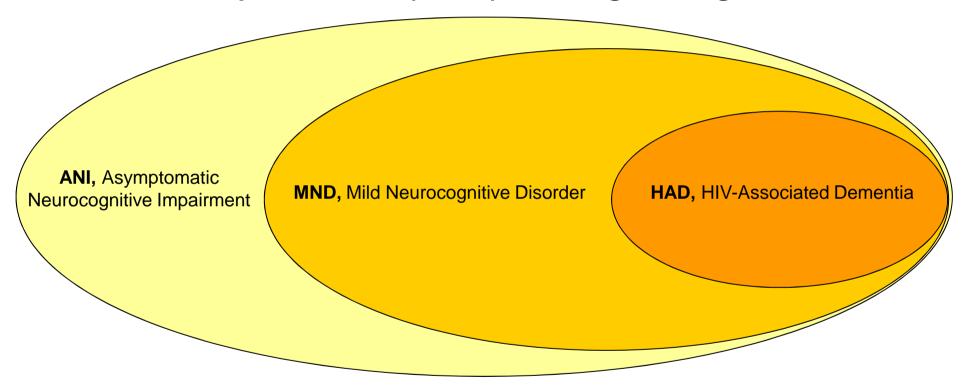

Neurocognitive impairment and cardiovascular disease

Andrea De Luca, M.D.

Professor of Infectious Diseases


Director, post-graduate school of Infectious and Tropical Diseases, University of Siena

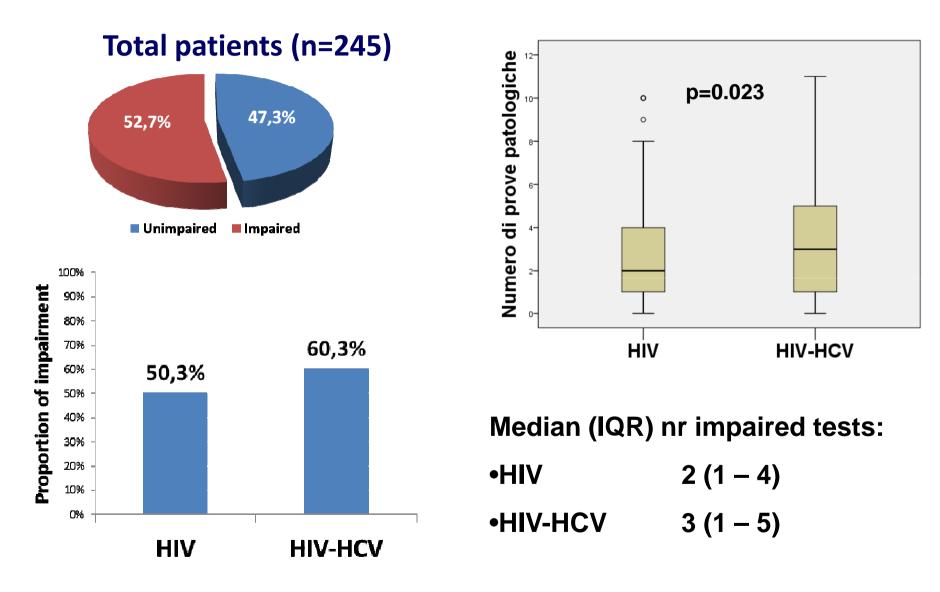
Director, Division of Infetious Diseases, Siena University Hospital, Siena, Italy

HIV-Associated Neurocognitive Disorders, HAND

Reduction of the performance (<1 SD) involving >=2 cognitive domains

NB: exclusion of other causes of neurocognitive impairment

Updated **RESEARCH** nosology for HIV-associated neurocognitive disorders. Neurology 2007; 69: 1789-99

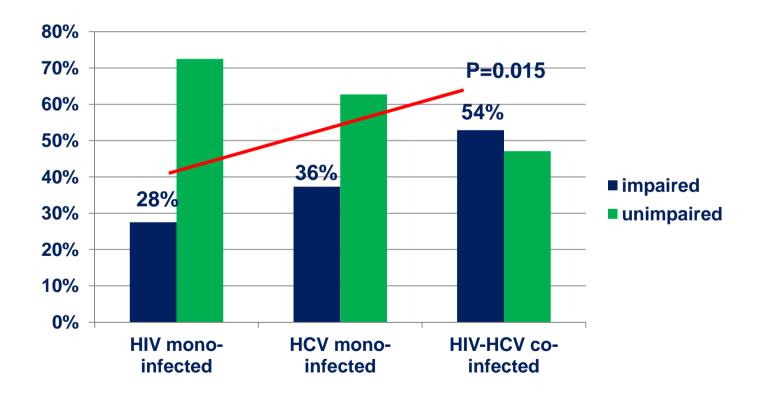

Outline

- Evidence linking metabolic abnormalities /atherosclerosis to neurocognitive impairment in HIV+ patients
- (Differences/similarities with the general population)
- Risk factors and pathogenetic mechanisms
- Influence of the type of antiretroviral therapy?
- How to prevent or treat this complication

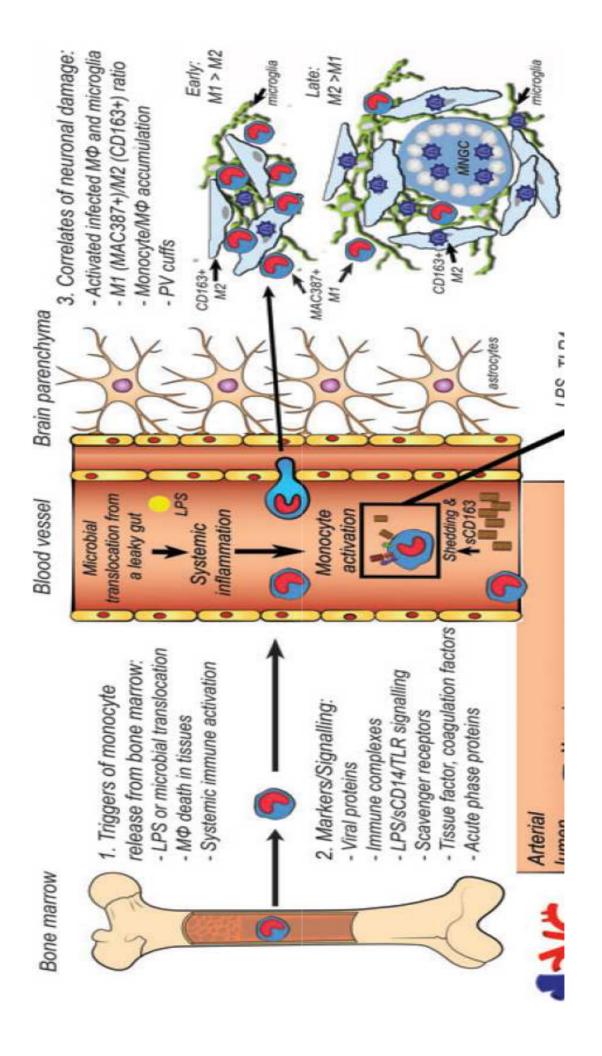
Conditions/disorders associated with neurocognitive impairment (general population)

- Dementia (Alzheimer, vascular...)
- Depression, anxiety, psychosis
- Drug abuse and drug dependence (current, previous)
- Alcoholism
- CNS infections or cancers (and their sequelae)
- Cerebrovascular disorders
- Metabolic encephalopathies
- HCV co-infection, decompensated cirrhosis

Prevalence of HAND Coorte UCSC



Fabbiani M et al. HIV Med 2013


CLINICAL AND EPIDEMIOLOGICAL STUDY

Comparison of cognitive performance in HIV or HCV mono-infected and HIV-HCV co-infected patients

N. Ciccarelli · M. Fabbiani · P. Grima · K. Falasca · M. Tana · E. Baldonero · M. Colafigli · M. C. Silveri · J. Vecchiet · R. Cauda · S. Di Giambenedetto

	Univariate analysis		Multivariate analysis	
	OR (95 % CI)	p Value	OR (95 % CI)	p Value
Variables explored in the total population				
Sex (male vs. female)	0.86 (0.42-1.77)	0.688		
Age	1.01 (0.97-1.06)	0.544		ţ
Education (per 1 year more)	0.78 (0.69-0.89)	<0.001	0.78 (0.68-0.89)	<0.001
Past injection drug users	2.10 (1.07-4.12)	0.030	0.83 (0.32-2.14)	0.698
Zung depression scale (per 1 point more)	1.054 (1.02-1.09)	0.002	1.05 (1.01-1.08)	0.017
Groups				
HIV mono-infected	1 (ref)		1 (ref)	
HCV mono-infected	1.45 (0.62-3.37)	0.392	1.37 (0.51-3.66)	0.528
HIV-HCV co-infected	3.02 (1.32-6.93)	0.009	3.35 (1.07-10.52)	0.038
Variables explored in the total HIV population (groups 1 and 3)	1 and 3)			
Duration of HIV infection (per 1 year longer)	1.04 (0.98-1.10)	0.166		
Time on antiretroviral therapy (per 1 year longer)	1.03 (0.93-1.13)	0.594		
Past AIDS-defining events	1.79 (0.66–4.90)	0.256		
HIV-RNA <50 copies/mL	1.24 (0.44-3.48)	0.683		
CD4 cells count nadir	0.10 (0.1-1.00)	0.129		
CD4 cells count	0.10(0.1-1.00)	0.154		
CPE rank ≥6	1.37 (0.49–3.81)	0.543		
Variables explored in the total HCV population (groups 2 and 3)	2 and 3)			
Duration of HCV infection	1.07 (0.98-1.16)	0.124		
HCV-RNA (logioUI/L)	1.255 (0.88–1.78)	0.205		

Monocytes/macrophages (M/M) activation markers

- CD16 is a surface markers implicated in BBB transmigration:
 - Three phenotypes can be distinguished on the basis of CD14 and CD16 expression:
 - Classic CD14++CD16-
 - Intermediate CD14++CD16+
 - Nonclassic CD14+CD16++
 - HIV infection is associated with an increase in Intermediate and Nonclassic phenotypes
 - CD16 is expressed in activated monocytes
 - CD16+ cells express higher levels of cell migration markers (e.g. CXCR5, CX3CR1)
- CD163 is a haptoglobin-haemoglobin scavenger receptor expressed by M/M
 - Cleaved by proinflammatory stimuli and released as soluble receptor (sCD163)
- CD11b is a surface marker indicating a high tissue migratory property
- HLADR, CD38, CD69 are other markers implicated in M/M activation

M/M activation markers and cognitive impairment

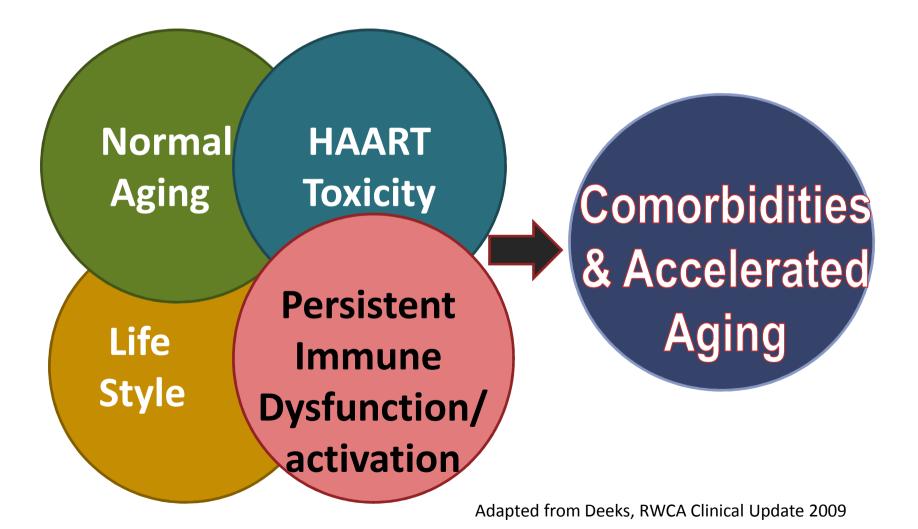
- sCD14:
 - elevated in plasma and CSF samples
- sCD163:
 - elevated plasma and CSF samples
- Most data are from patients with HIV-RNA >50 copies/mL
- Most studies are cross sectional
- Paucity of data on specific M/M phenotypes involved in immune activation

Cognitive disorders in HIV-infected patients: are they HIV-related?

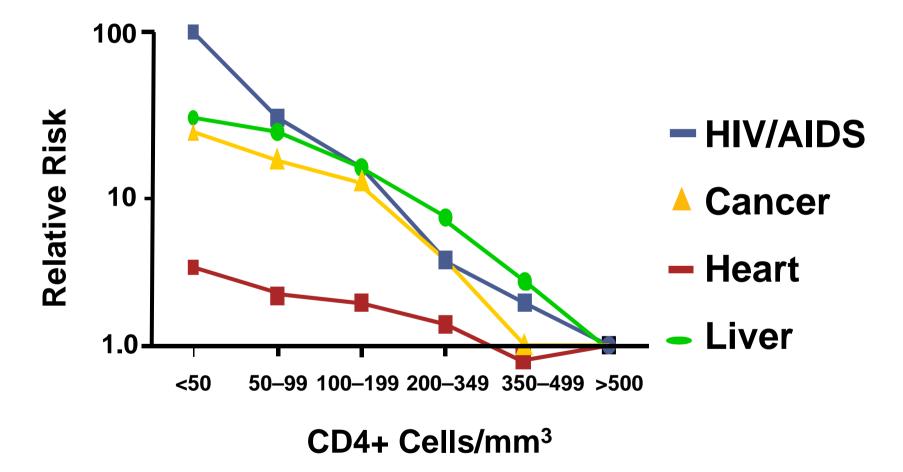
Charlotte Bernard^{d,e}, Mathias Bruyand^{a,b}, Frédéric-Antoine Dauchy^{b,f}, Philippe Morlat^{a,b,c}, Jean-François Dartigues^a, Geneviève Chêne^{a,b}, Patrick Mercié^{a,b,c}, Carine Greib⁸, Laura Richert^a, Didier Neau^f, Fabrice Bonnet^{a,b,c}, Hélène Amieva^a, Fabienne Marquant^{a,b}, Gwenaelle Catheline^d, Patrick Dehail^{b,h}, Francois Dabis^{a,b} for the ANRS CO3 Aquitaine Cohort

Objectives: Large unselected studies on representative samples of HIV-infected patients with a whole battery of neuropsychological tests and cerebral MRI scan are required to assess the frequency of neurocognitive impairment (NCI), the determinants of mild neurocognitive disorders (MNDs), or HIV-associated dementia (HAD) and the relationship between NCI and MRI scan findings.

Methods: Investigation of 400 consecutively enrolled HIV-1-infected adults from the ANRS CO3 Aquitaine Cohort, using standardized neurocognitive tests chosen to achieve consistency with Frascati's criteria. Half of the patients had a cerebral MRI scan allowing gray and white matter volume measurement. Factors associated with NCI were studied by logistic regression models.


Results: Median age of participants was 47 years, 79% were male and 89% received combination antiretroviral treatment (cART), of whom 93% had plasma HIV RNA below 500 copies/ml. Median CD4 cell count was 515 cells/μl. Prevalence of NCI was 59%, including 21% of asymptomatic NCI, 31% of MND, and 7% of HAD. Alow level of education, prior neurologic AIDS-defining disorders event, anxiety, depressive symptoms, and prior history of brain damage were independently associated with MND or HAD, but neither HIV nor cART-related variables. The presence of NCI was significantly associated with lower gray matter fraction.

Interpretation: In this large unselected cohort, a high prevalence of symptomatic neurocognitive disorders was mainly related to its traditional determinants and associated with gray matter atrophy at early stages of the disease.


© 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins

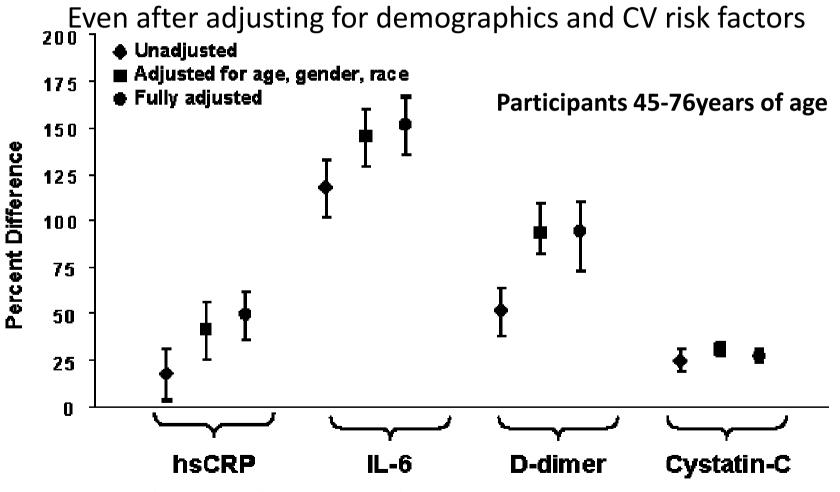
Comorbidities & Premature Aging

Even After Adjusting for Age, HAART Exposure & Traditional Risk Factors

Low CD4 On-Therapy Predicts Risk of AIDS & Non-AIDS Events (D:A:D)

Weber R, et al. CROI 2005, #595. Weber R, et al Arch Int Med 2006; 166:1632-1641. Philips AN. AIDS 2008; 22:2409-2418. Baker JV, et al AIDS 2008; 22:841-848.

Normalization of CD4/CD8 Ratio and Non-AIDS Events in ICONA Cohort

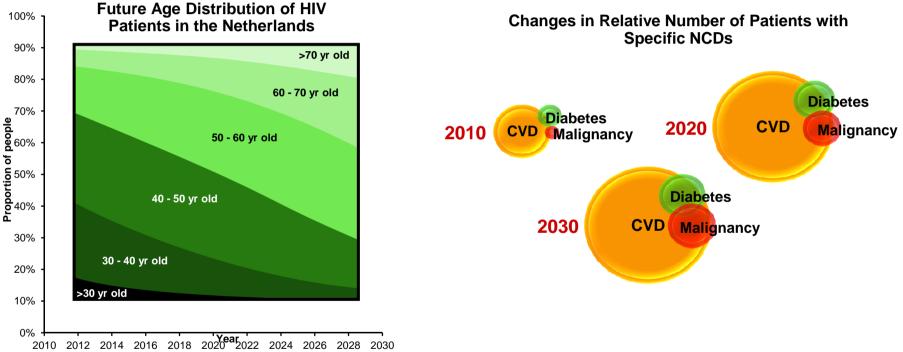

- Analysis of 3236 pts with virologic suppression on ART and CD4/CD8 ratio ≤ 0.8
 - 458 pts reached CD4/CD8 \geq 1
 - Median time to normalization: 10.1 yrs
 - Younger pts, those starting ART in recent yrs, those with higher CD4+ counts and negative CMV IgG more likely to normalize
- Current CD4/CD8 ratio predicted incidence of clinical progression (serious non-AIDS-related events or all-cause death)
 - Remained predictive after adjusting for current CD4+ cell count

Time	Probability of CD4/CD8 Normalization (95% CI)
1 yr	4.4 (3.7-5.2)
2 yrs	11.5 (10.2-13.0)
5 yrs	29.4 (26.7-32.4)

Current CD4/CD8 Ratio	Incidence of Clinical Progression (95% Cl)
< 0.30	4.8 (3.9-5.9)
0.30-0.45	2.4 (1.9-3.1)
> 0.45	2.0 (1.7-2.3)

Mussini C, Lancet HIV 2015

Elevated Inflammatory Markers in Treated HIV-Infected Patients



Neuhaus J, et al. CROI 2009 Abstract O-140.

Clinical Implications of an Ageing HIV Population: ATHENA Cohort

Increased Burden of Non-Communicable Diseases (NCDs) and Polypharmacy

An individual-based model of an ageing HIV-population following patients on treatment as they age, develop NCDs and start co-administered medications

 In the ATHENA cohort, proportion of patients on ART aged ≥50 years old will increase from 28% to 73% between 2010 and 2030

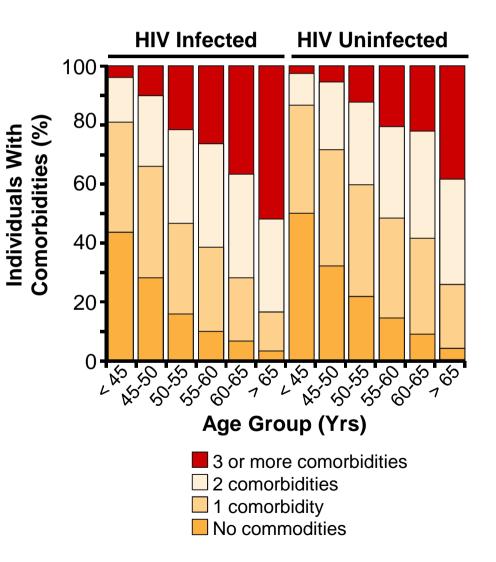
- Burden of NCDs mostly driven by larger increases in cardiovascular disease compared with increases in other comorbidities
- Polypharmacy is being driven by increase in cardiovascular medications

ATHENA: Comorbidities Increase With Age and With HIV Infection

Modeling study suggests that in 2030:

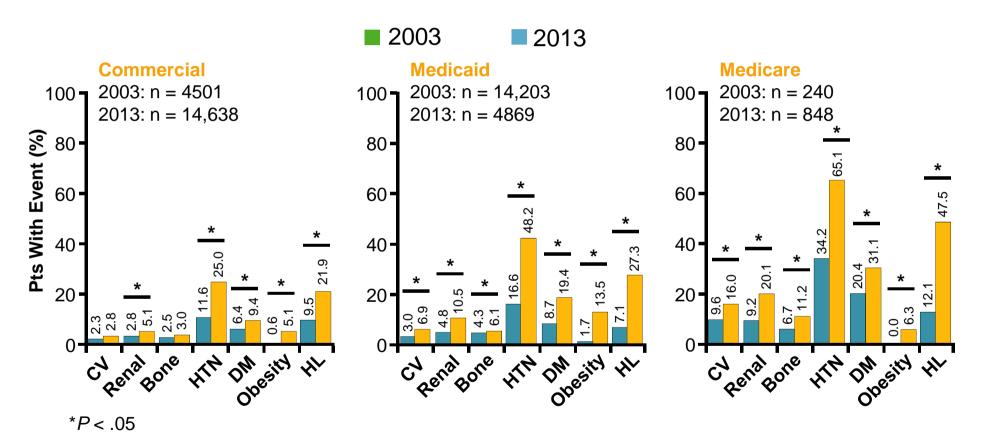
■84% of HIV+ pts will have ≥ 1 NCD

- Increased from 29% in 2010
- Pts with comorbidities higher in every age group in HIV+ pts vs uninfected


■28% of HIV+ pts will have≥ 3 NCDs

•54% of HIV+ pts will be prescribed meds other than ART

- Increased from 13% in 2010

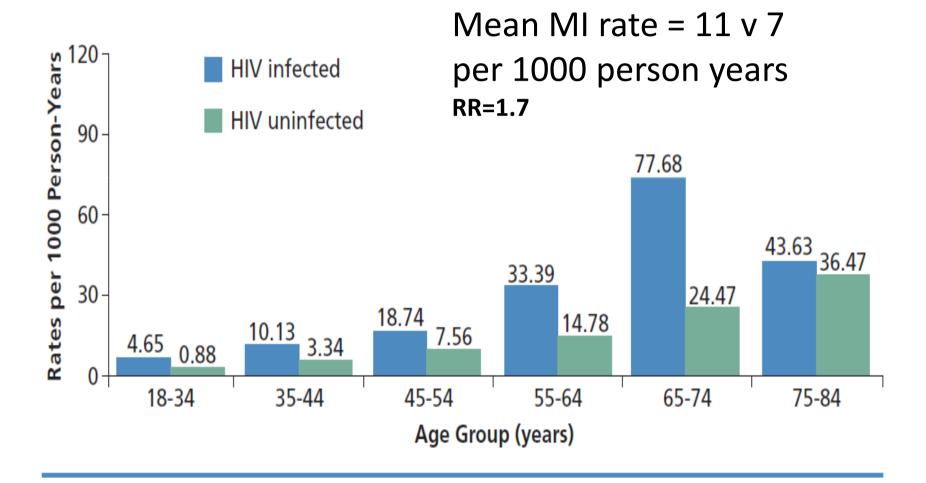

■20% will take ≥ 3 meds besides ART

- Mostly driven by increase in CVD

Smit M, et al. Lancet Infect Dis. 2015;15:810-818.

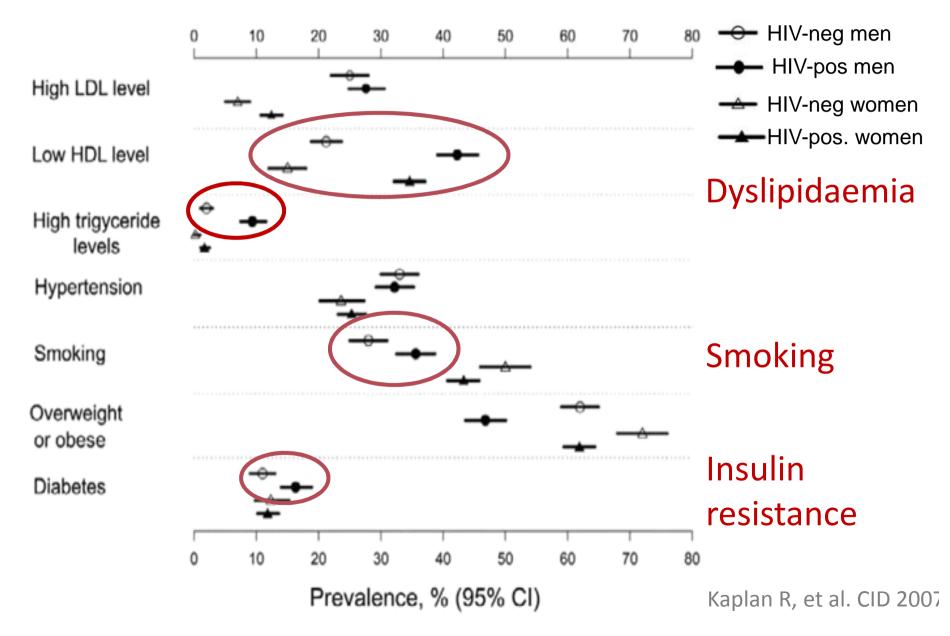
Comorbidity Prevalence Increased 2003-2013 in Commercial and Public Settings

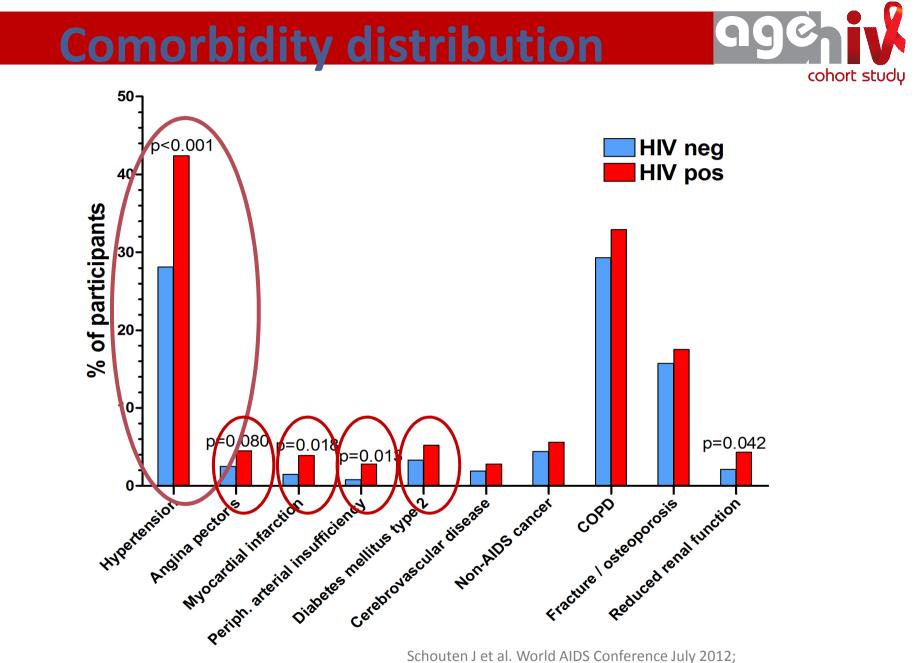
 In 5-yr trend analysis, HTN, DM, hyperlipidemia, and renal dysfunction rates increased for all 3 payer groups


Meyer N, et al. ICAAC 2015. Abstract.

Insulin Resistance and Diabetes in the HIV Positive Population

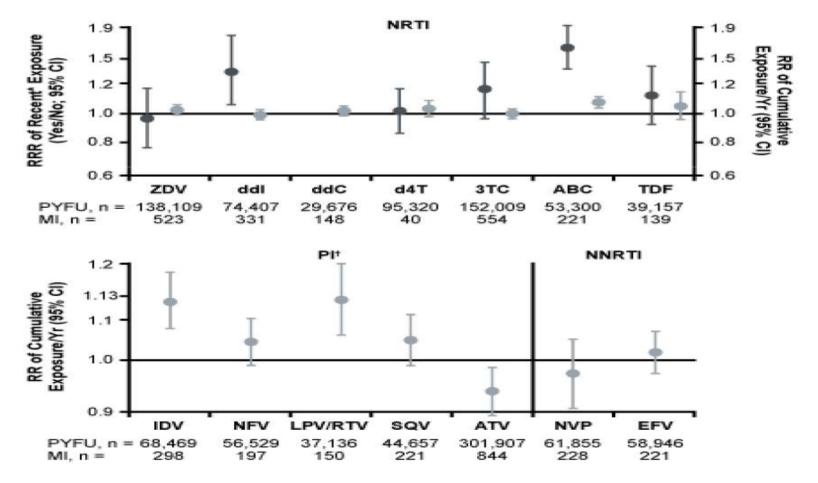
- An increased prevalence of insulin resistance, glucose intolerance and diabetes has been reported in HIV infections in the HAART era¹
- Diabetes in HIV positive men with HAART exposure > 4X HIV-seronegative men²
- Risk factors for HIV positive individuals developing diabetes include³:
 - Certain ARVs (PIs, d-drugs)
 - Older age
 - Ethnic background (African American)
 - HCV co-infection


¹Florescu, D. Antiretroviral Therapy. 2007. 12:149-162.
²Brown, TT. Arch Intern Med. 2005. 165:1179-1184.
³DeWit, D. Diabetes Care. 2008. 31(6):1224-1229 De Luca A EACS 2015.


Myocardial Infarction rates in HIV+ versus HIV-

Triant J, et al. Clin Endocrinol Metab. 2007.

Risk factors CVD HIV+ vs HIV-



*

Schouten J et al. World AIDS Conference July 2012; updated May 2013 (personal communication, Reiss P)

Cardiovascular complications of HIV

MI risk disease by ARV exposure in D:A:D

Worm S, et al. D:A:D. JID 2012.

Association of ABC Exposure with Risk of CV Events

(separate trials – not a direct head-to-head comparison)

		ABC Association, Risk ^d of MI (95%CI)
Restricted Population (20,998) ^{1,2}	MI (93)	1.95 ¹ (1.11-3.44) ²
Full Population (64,607) ^{1,2}	MI (301)	1.33 ¹ (0.95-1.85) ²
D:A:D Replication (>64,607) ^{1,2}	MI (>301)	$1.68^1 (1.08-2.61)^2$
D:A:D 2014 (367,559) ³	MI (941)	1.97 (1.68-2.33)
D:A:D (178,835) ⁴	MI (580)	1.70 (1.17-2.47)
D:A:D 2016 (3,863) ¹⁷	Second MI (102)	1.50 (1.00-2.24)
VA - Choi (59,578) ⁶	CVD Event ^c (501)	1.48 (1.08-2.04) 1.48
Swiss (NA) ⁷	CVD Evente (350)	1.52 (1.13-2.04) 1.52
French HD (298,156) ⁸	MI (289)	1.27 ^e (0.64-2.49)
Kaiser (34,472) ¹⁶	CVD (178)	2.20 (1.4-3.5)
VA - Bedimo (76,376) ⁹	MI (278)	1.18 (0.92-1.50) 1.18
QPHID (35,851) ¹⁰	MI (125)	1.79 (1.16-2.76)
Danish (19,124) ¹¹	MI (67)	2.00 (1.07-3.76)
ALLRT/ACTG (17,404) ¹²	MI (36)	0.70 (0.3 -1.6)
FDA (range: 42 to 1257) ¹³	MI (24)	1.02 (0.56-1.84)
SMART (NA) ¹⁴	MI (19)	4.25 (1.39-13.0)
STEAL (NA) ¹⁵	MI (3)	8.3 (1.02-50.0)

Adjusted Hazard Ratio (HR) or Relative Risk (RR)

All or majority of patients were treatment-experienced at ABC initiation; bAll or majority of pts were treatment-naïve at ABC inclusion; cMI, unstable angina, CVA, CHF, PVD; dRisk reported is the adjusted risk as presented by each study; e MI, unstable angina, PCI, CABG, fatal CAD 1. Palella F, et al. CROI 2015; Seattle, WA. #749; 2. Personal Communication - Investigator. March 2015; 3. Sabin C, et al. CROI 2014. Boston, MA. #LB747; 4. Worm SW, et al. JID 2010; 5. Rotger M et al, CID 2013; 6. Choi AI, et al. AIDS. 2011; 7. Young J, et al. IAS 2013. MOPEO70; 8. Lang S, et al. Arch Intern Med 2010; 9. Bedimo RJ, et al. CID 2011; 10. Durand M, et al. JAIDS 2011; 11. Obel N, et al. HIV Medicine 2010; 12. Ribaudo HJ, et al. CID 2011; 13. Ding X, et al. JAIDS 2012; 14. SMART/INSIGHT Study Group. AIDS 2008; 15. Martin A, et al. CID 2009 (full citations located in slide notes); 16. Marcus, JL, et al, JAIDS 2015; 17. Sabin, et al. CROI 2016, #661

Possible Non-Cholesterol Causes of CVD Risk With Protease Inhibitor Therapy in HIV

- Endothelial dysfunction
- Increased endothelial permeability
- Insulin resistance
- Accelerated lipid accumulation in vessel wall
- Inflammation
- Impaired response to vascular injury
- Increased oxidative stress
- Lipoatrophy / reduced adiponectin

FRAM 2 carotid Intima Media Thickness: HIV Infection is an Independent Risk for Atherosclerosis

- Cross-sectional study
- Evidence of pre-clinical atherosclerosis Internal cIMT (mm)

HIV+ (n=433)	Controls (n=5479)	P value
1.17	1.06	<.0001

- After adjusting for demographics and CVD risk factors, HIV infection has more atherosclerosis than controls
 - Difference 0.15 mm (*P* =.0001)
- HIV infection similar to traditional CV risk factors

Multivariable Analysis of Associated Factors				
Estimated Effect of	Difference in Internal cIMT (mm) ^a			
HIV infection	0.15			
Current smoker Past smoker	0.17 0.09			
Age (per 10 yr)	0.16			
Male ^b	0.13			
Diabetes	0.12			
Systolic BP	0.05			
^a <i>P</i> <.001 for all values. ^b Significant gender inte	eraction (women > men).			

"Independent association of HIV infection with atherosclerosis should be taken into account when counseling HIV-infected patients with regard to their CVD risk factors."

Grunfeld C, et al. 16th CROI; 2009; Montreal. Abstract #146.

Factors associated with carotid distensibility (n=2789)

Table 2. Carotid Arterial Distensibility by HIV Adjusted for Demographic, Behavioral, and Clinical Cofactors

	Overall		MACS (males)		WIHS (female	
	Percent Difference	95% CI	Percent Difference	95% CI	Percent Difference	95% CI
WIHS (vs MACS)	-0.2	(-17.2, 20.3)				
Age per 10 years	-17.1†	(-19.4, -14.7)	-12.1†	(-13.7, -10.5)	-19.1†	(-21.5, -16.6)
Race/ethnicity						
White and other races	0		0		0	
Black	-10.4†	(-12.7, -8.1)	-5.8†	(-9.2, -2.4)	-11.0†	(-14.3, -7.6)
Hispanic	-8.9†	(-11.0, -6.8)	-6.6	(-14.4, 1.8)	-9.2†	(-12.8, -5.4)
More than high school education	1.2	(-2.3, 4.7)	5.6	(-6.5, 19.6)	-0.1	(-2.8, 2.7)
Smoking status						
Never smoked*	0		0		0	
Former smoker	-0.9	(-5.2, 3.6)	3.6	(-2.2, 9.9)	-3.5	(-8.3, 1.5)
Current smoker	-0.1	(-3.5, 3.5)	-0.6	(-4.1, 3.0)	0.2	(-5.0, 5.6)
History of injection drug use	-2.6	(-5.7, 0.6)	-3.3	(-8.3, 1.9)	-0.1	(-4.7, 4.0)
Family history of myocardial infarction	0.3	(-2.8, 3.5)	-3.8	(-8.1, 0.6)	2.9	(-1.7, 7.7)
Body mass index per 5 kg/m ²	-4.4†	(-5.5, -3.3)	-5.9†	(-9.3, -2.3)	-4.1†	(-5.3, -3.0)
LDL-c per 0.52 mmol/L (20 mg/dL)	-0.9†	(-1.4, -0.3)	-1.0	(-2.2, 0.2)	-0.5	(-1.2, 0.3)
HDL-c per 0.13 mmol/L (5 mg/dL)	0.5†	(0.1, 1.0)	-0.2	(-1.2, 0.9)	0.8†	(0.4, 1.1)
Systolic blood pressure per 10 mm Hg	-8.1†	(-9.4, -7.1)	-8.8†	(-10.1, -7.5)	-8.0†	(-9.4, -6.7)
Diabetes	-2.1	(-5.1, 1.0)	-3.0	(-7.8, 2.1)	-1.7	(-5.7, 2.5)
HIV positive vs negative	-4.3†	(-7.4, -1.1)	-5.5†	(-9.9, -1.0)	-1.9	(-6.2, 2.6)

*Reference.

†P<0.05.

Seaberg Stroke 2010

Factors associated with NCI (SMART study, n=292)

Factors ^b	% of population	NCIº	QNPZ-5
Age (per 10 y)		NS	NS
Gender (female vs	41.7	NS	p=0.05°
male)			-0.21
Race/ethnicity	19.7	p0.08	p<0.001°
(black vs other)		2.25	-0.48
Education (>12 y)	46.6	NS	NS
Location		NS	NS
Brazild	15.2		
Thailand	50.0		
Prior AIDS	20.7	p-0.08	p=0.05°
		0.41	0.24
Hepatitis B	2.1	3 44	p=0.05°
			-0.66
Prior CVD	3.5	p-0.01°	p=0.02°
		6.17	-0.65
Blood pressure-	11.0	33 44	p=0.03°
lowering drugs			-0.37
Total cholesterol		p-0.06	p-0.02°
(per 10 mg/mL)		1.08	-0.03
HDL (per 10 mg/mL)		62	<u>2</u> 8
Depression	23.8	<u>ः .</u>	p=0.07
(CES-D≥ 16)			-0.21

Wright EJ Neurology 2010

thickness are associated with lower cognitive performance Cardiovascular risk factors and carotid intima-media in HIV-infected patients

M Fabbiani,¹ N Ciccarelli,^{1,2} M Tana,³ S Farina,¹ E Baldonero,^{1,2} V Di Cristo,¹ M Colafigli,¹ E Tamburrini,¹ R Cauda,¹ MC Silveri,² P Grima³ and S Di Giambenedetto¹

¹Institute of Clinical Infectious Diseases, Catholic University of Sacred Heart, Rome, Italy, ²Memory Clinic, Catholic University of Sacred Heart, Rome, Italy and ³S. Caterina Novella Hospital, Galatina, Italy

DOI: 10.1111/j.1468-1293.2012.01044.x HIV Medicine (2012)

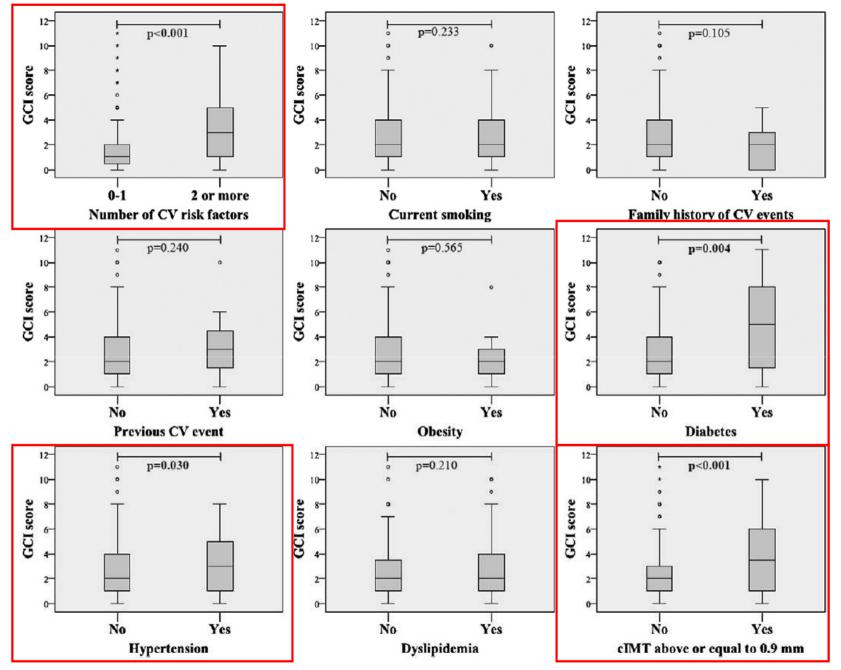


Fig. 1 Global cognitive impairment (GCI) score according to each cardiovascular (CV) risk factor. clMT, carotid intima-media thickness.

Fabbiani M HIV Medicine 2012

Table 3 Predictors of global cognitive performance

	Univariate analysis		Multivariate analysis	
	Mean (95% CI) change in GCI score	Р	Mean (95% CI) change in GCI score	Р
Male sex	-0.41 (-0.75; 0.67)	0.911		
Age (per 10-year increase)	0.59 (0.31; 0.88)	<0.001	0.15 (-0.15; 0.44)	0.323
Education (per 1-year increase)	-0.29 (-0.37; -0.22)	<0.001	-0.24 (-0.31; -0.16)	< 0.001
Non-Italian born	-0.12 (-1.30; 1.05)	0.837		
Past injecting drug user	0.76 (0.03-1.49)	0.043	-0.07 (-1.108; 0.96)	0.894
Past AIDS-defining events	0.76 (-0.03; 1.55)	0.059		
HCV coinfection	0.77 (0.06-1.49)	0.034	0.13 (-0.89; 1.14)	0.808
Time from HIV diagnosis (per 1-year increase)	0.03 (-0.01; 0.07)	0.124		
CD4 count at nadir (per 100 cells/µL increase)	-0.25 (-0.48; -0.03)	0.029	-0.05 (-0.27; 0.17)	0.639
PI experience	1.00 (0.28–1.73)	0.007	0.45 (-0.23; 1.12)	0.193
Current cART	1.42 (0.16-2.69)	0.027	0.66 (-0.53; 1.85)	0.275
CPE rank \geq 7	0.01 (-0.81; 0.81)	0.998		
CD4 count (per 100 cells/µL increase)	-0.09 (-0.22; 0.04)	0.154		
HIV RNA < 50 copies/mL	0.16 (-0.68; 0.99)	0.714		
Zung depression score	0.04 (0.01; 0.07)	0.010	0.02 (-0.01; 0.05)	0.148
Cardiovascular risk factor				
Current smoking	0.10 (-0.51; 0.71)	0.753		
Family history of CV events	-0.88 (-1.79; 0.04)	0.060		
Previous CV event	0.79 (-0.63; 2.20)	0.275		
Obesity	-0.50 (-1.78; 0.78)	0.440		
Diabetes	2.32 (1.24; 3.40)	<0.001	1.38 (0.38, 2.38)	0.007
Hypertension	0.84 (-0.01; 1.68)	0.054		
Dyslipidaemia	0.37 (-0.26; 1.00)	0.244		
$cIMT \ge 0.9 mm$	1.60 (0.97; 2.22)	<0.001	0.66 (0.02; 1.31)	0.044

Bold values represent statistically significant P values.

cART, combined antiretroviral therapy; CI, confidence interval; cIMT, carotid intima-media thickness; CPE, central nervous system penetration effectiveness score; CV, cardiovascular; GCI, global cognitive impairment; HCV, hepatitis C virus; PI, protease inhibitor.

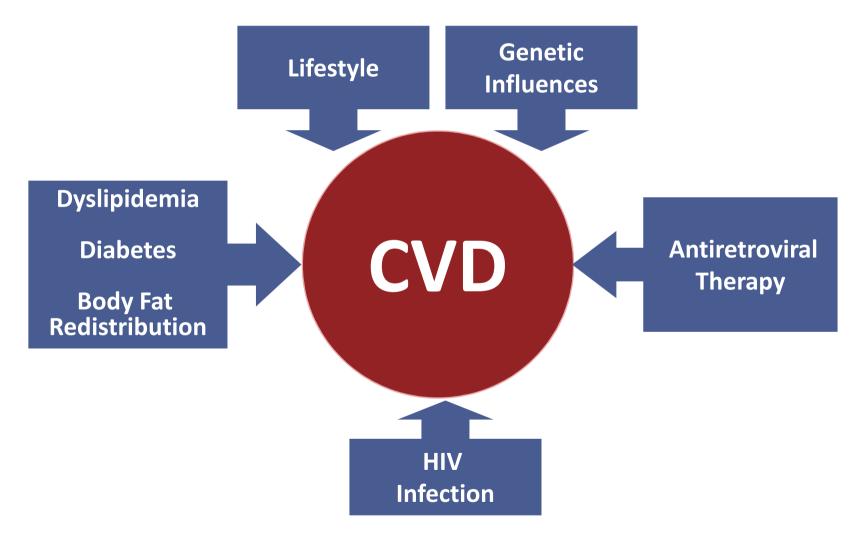
Ophtalmic artery resistance index and cognitive impairment (n=116)

Variable	Univariate analysis		Multivariate analysis	
	OR (95% CI)	р	OR (95% CI)	р
Male sex	1.82 (0.69-4.77)	0.218		
Age (per 10 years increase)	2.03 (1.29-3.20)	0.002	1.25 (0.72-2.15)	0.415
Education (per 1 year increase)	0.76 (0.67-0.86)	<0.0001	0.84 (0.73-0.97)	0.01
Non Italian born	0.25 (0.02-2.35)	0.220		
Past injecting drug users	1.00 (0.99-1.01)	0.402		
Past AIDS-defining events	1.96 (0.66-5.88)	0.224		
HCV coinfection	1.20 (0.54-2.63)	0.645		
Time from HIV diagnosis (per 1 year increase)	1.05 (0.99-1.11)	0.072	1.02 (0.95-1.10)	0.541
CD4 at nadir (per 100 cells increase)	0.87 (0.64-1.19)	0.405	0.00	
PI experience	2.10 (0.95-4.60)	0.060	1.10 (0.42-2.86)	0.835
CPE rank ≥7	2.6 (0.66-10.62)	0.164		
CD4 cells count (per 100 cells increase)	0.99 (0.86-1.13)	0.893		
HIV-RNA <20 copies/mL	1.93 (0.70-5.30)	0.190		
Chronic renal impairment	1.64 (0.26-10.23)	0.590		
Zung depression score	1.05 (1.01-1.1)	0.020	1.02 (0.96-1.07)	0.410
Current smoking	1.56 (0.74-3.29)	0.237		
Familiarity for CV events	0.28 (0.05-1.41)	0.123		
Previous CV event	3.34 (0.33-33.17)	0.302		
Obesity (BMI \geq 30 kg/m ²)	0.52 (0.04-5.99)	0.606		
Diabetes	1.46 (0.31-6.85)	0.628		
Hypertension	2.07 (0.75-5.72)	0.159		
Dyslipidemia	1.50 (0.71-3.18)	0.181		
OARI >0.72	7.83 (3.39–18.07)	<0.0001	4.70 (1.81-12.14)	0.00

Abbreviations: HCV, hepatitis C virus; PI, protease inhibitors; CPE, central nervous system penetration effectiveness score; CV, cardiovascular; BMI, body mass index; OARI, opthalmic artery resistance index; OR, odds ratio; CI, confidence interval.

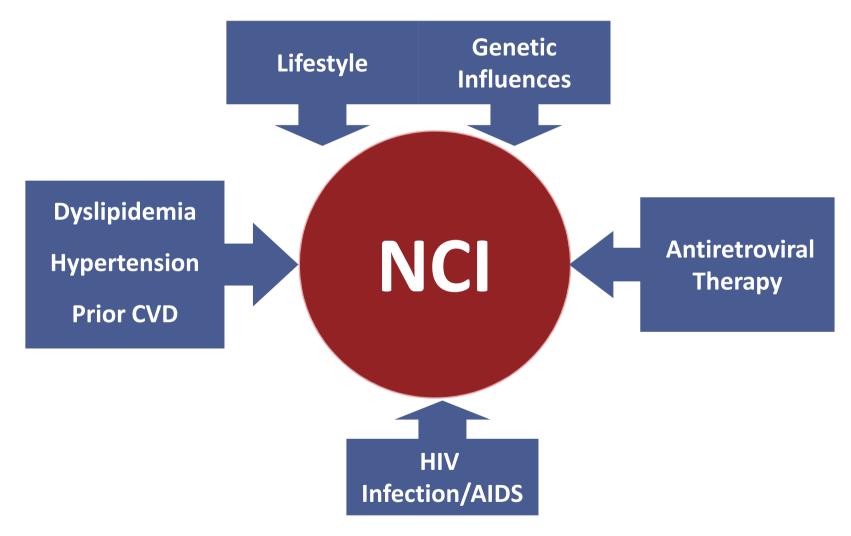
	Univariate analysis		Multivariate a	inalysis
	OR (95% CI)	<i>P</i> -value	OR (95% CI)	P-value
Variables at baseline				
Male sex	1.3 (0.6, 2.9)	0.556	-	-
Age (per 10 years higher)	1.5 (1.0, 2.9)	0.030	0.9 (0.6, 1.5)	0.792
Non-Italian born	1.0 (0.2, 5.8)	0.972	-	-
Past injecting drug users	2.2 (0.9, 5.2)	0.062	-	-
Past AIDS-defining events	1.2 (0.5, 2.9)	0.602	-	-
HCV coinfection	1.3 (0.5, 3.0)	0.593	-	-
Time from HIV diagnosis (per 1 year higher)	1.0 (0.9, 1.1)	0.586	-	-
Time from first cART (per 1 year higher)	1.1 (0.9, 1.1)	0.174	-	-
Cumulative PI exposure (per 1 year higher)	1.2 (1.0, 1.4)	0.008	1.2 (1.0, 1.4)	0.081
CD4+ T-cell count at nadir (per 100 cells higher)	0.7 (0.5, 0.9)	0.023	0.9 (0.6, 1.3)	0.579
CPE rank ≥6	1.0 (0.9, 5.7)	0.990	-	-
CD4+ T-cell count (per 100 cells higher)	0.8 (0.7, 1.0)	0.026	0.9 <mark>(</mark> 0.8, 1.1)	0.199
HIV RNA<50 copies/ml	0.7 (0.3, 2.0)	0.550	-	-
Zung Depression Score	1.00 (0.98, 1.04)	0.550	-	-
CV factors				
Current smoker	1.3 (0.7, 2.7)	0.385	-	-
Previous CV events	0.4 (0.0, 3.5)	0.409	-	-
Familiarity for CV events	0.4 (0.1, 1.6)	0.219	-	-
BMI≥30 <u>kg/m²</u>	2.2 (0.5, 9.0)	0.293	-	-
Diabetes	2.8 (0.8, 10.8)	0.145	-	-
HDL (per 1 mg/dl higher)	0.99 (0.97, 1.02)	0.810	-	-
Dyslipidaemia	3.2 (1.4, 7.2)	0.006	2.6 (1.0, 7.1)	0.053
cIMT (per 0.1 mm higher)	51.4 (7.4, 355.6)	0.001	14.5 (1.2, 174.6)	0.035
Baseline presence of ANI	8.3 (3.8, 18.3)	<0.001	9.5 (3.9, 23.3)	<0.001

Table 3. Baseline factors associated with the risk of cognitive impairment at 2-year follow-up examination (n=150)

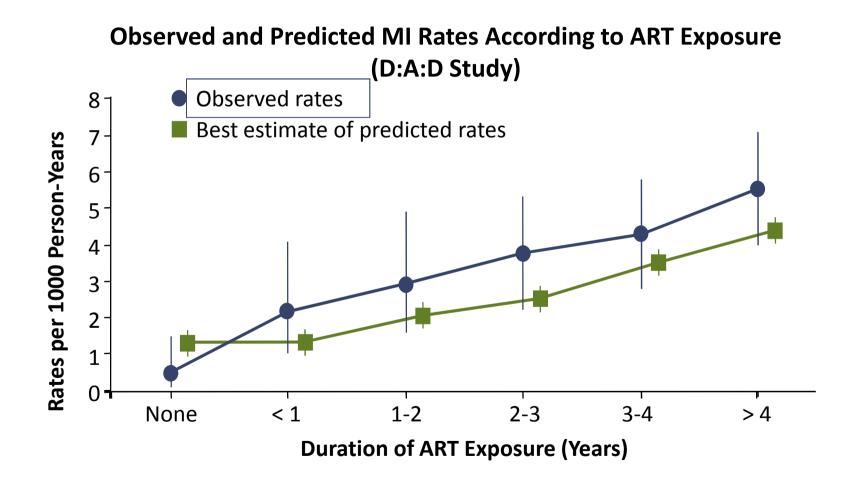

Significant *P*-values are in bold. ANI, asymptomatic neurocognitive impairment; BMI, body mass index; cART, combined antiretroviral therapy; cIMT, carotid intima-media thickness; CPE, central nervous system penetration effectiveness score; CV, cardiovascular; HDL, high-density lipoprotein cholesterol; PI, protease inhibitor.

	Univariate analysis		Multivariate a	nalysis
	OR (95% CI)	<i>P</i> -value	OR (95% CI)	<i>P</i> -value
Variables at baseline				
Male sex	1.6 (0.7, 3.7)	0.259	-	-
Age (per 10 years higher)	1.0 (0.7, 1.4)	0.878	-	-
Non-Italian born	0.9 (0.1, 4.9)	0.863	-	-
Past injecting drug users	1.8 (0.8, 4.2)	0.175	-	-
Past AIDS-defining events	1.0 (0.4, 2.3)	1.000	-	-
HCV coinfection	1.2 (0.5, 2.9)	0.628	-	-
Time from HIV diagnosis (per 1 year higher)	1.0 (0.9, 1.0)	0.508	-	-
Time from first cART (per 1 year higher)	1.0 (0.9, 1.1)	0.679	-	-
PI exposure	1.1 (1.0, 1.3)	0.134	-	-
CD4 ⁺ T-cell count at nadir (per 100 cells higher)	1.4 (0.7, 2.8)	0.403	-	-
CPE rank	1.0 (0.7, 1.3)	0.862	-	-
CD4 ⁺ T-cell count (per 100 cells higher)	0.83 (0.71, 0.97)	0.019	0.80 (0.66, 0.97)	0.026
HIV RNA<50 copies/ml	0.6 (0.2, 1.4)	0.216	-	-
Zung Depression Score	1.00 (0.97, 1.04)	0.681	-	-
CV factors				
Current smoker	1.1 (0.5, 2.1)	0.865	-	-
Previous CV events	0.0 (0.0-NC)	0.999	-	-
Familiarity for CV events	1.4 (0.5, 4.0)	0.535	-	-
BMI	1.0 (0.9, 1.2)	0.400	-	-
Diabetes	2.3 (0.6, 8.6)	0.236	-	-
HDL (per 1 mg/dl higher)	0.99 (0.96, 1.01)	0.295	-	-
Dyslipidaemia	2.9 (1.3, 6.3)	0.007	2.7 (1.1, 7.1)	0.037
clMT (per 0.1 mm higher)	13.0 (2.3, 73.7)	0.004	4.16 (0.7, 32.1)	0.122
Baseline pathological long-term memory performance	13.8 (5.9, 32.2)	<0.001	13.6 (5.4, 33.9)	<0.001

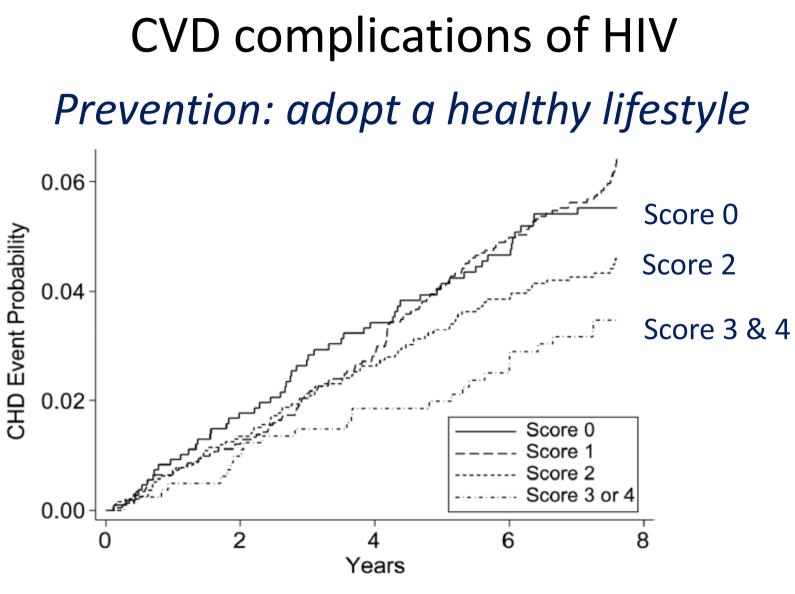
Table 4. Baseline factors associated with a higher risk of impaired long-term memory performance (mean z score \leq -1) at 2-year follow-up examination (n=150)


Significant *P*-values are in bold. BMI, body mass index; cART, combined antiretroviral therapy; CPE, central nervous system penetration effectiveness score; cIMT, carotid intima-media thickness; CV, cardiovascular; HDL, high-density lipoprotein <u>cholesterol</u>; NC, not calculable; PI, protease inhibitor.

Factors Affecting Risk for CVD in Patients With HIV

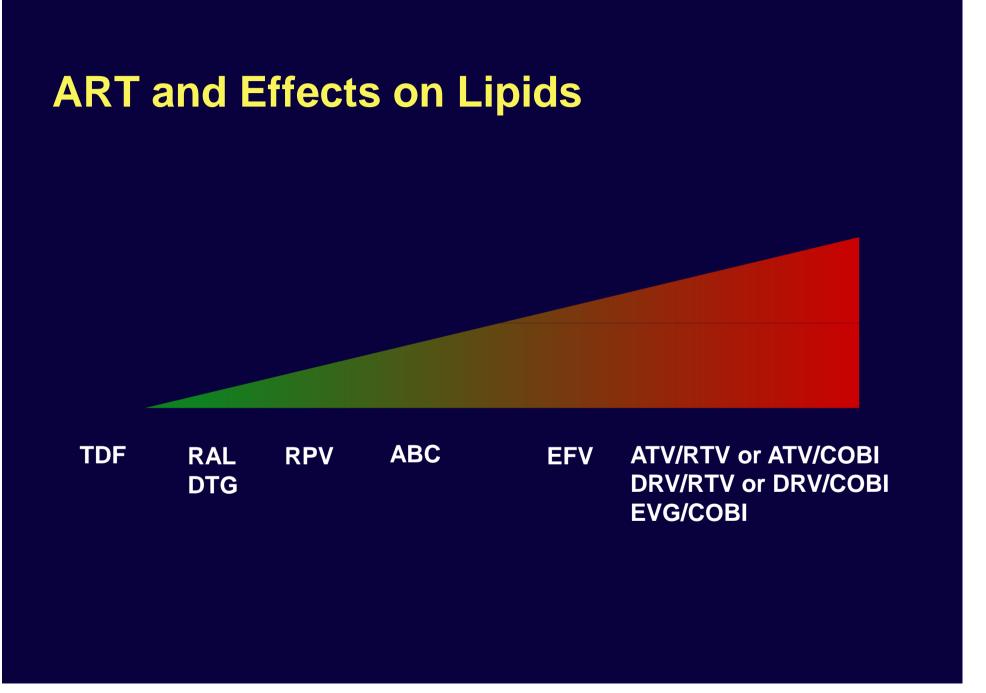

Adapted from Grinspoon S et al. N Engl J Med. 2005;352:348.

Factors Affecting Risk for NCI in Patients With HIV



Adapted from Grinspoon S et al. N Engl J Med. 2005;352:348.

Framingham Risk Score: Underestimates CVD Risk in HIV+ Patients



Law MG et al. HIV Med. 2006;7:218-230.

Probability of CHD according to health score


Ahmed H et al. MESA. Am J Epi 2013.

Randomized Trial of Statin Therapy and Coronary Plaque Progression

- Randomized 12-mo trial in HIV+ pts on stable ART with LDL-C < 130 and ≥ 1 coronary plaque
 - Atorvastatin 20 mg ([↑] to 40 mg at 3 mos) (n = 19) vs
 - Placebo (n = 21)
- Statin therapy reduced progression of coronary plaques
 - Reduced overall plaque volume, including lipid-laden plaques
 - Reduced high-risk morphology plaques
- Statin therapy safe and well tolerated

Plaque Progression in Proximal Left Anterior Descending Coronary Artery With Atorvastatin or Placebo

D:A:D: CVD Deaths Decreased in Era of Modern ART

Most Common Causes of Death, 1999-2011 100 -90 -80 -70 -All Deaths (%) 60 -50 -40 -30 -20 -10 -0 -Total 1999-2000 2001-02 2003-04 2005-06 2007-08 2009-11 (N = 3909) (n = 256) (n = 788) (n = 862) (n = 718) (n = 658) (n = 627)Other AIDS related CVD related Liver related Non-AIDS cancer Unknown

Smith C, et al Lancet. 2014:384:241-248.

Overall Conclusions

- Virologic suppression and immune restoration remain the most important goals of HIV disease management
 - Will certainly reduce HIV-associated NCI
- With increasing longevity of HIV-infected patients, focus is shifting toward whole health patient care
 - Management of age-related comorbidities is critical in order to optimize long-term outcomes
 - Lifestyle changes (diet, exercise, smoking, alcohol)
 - Statins
 - Treatment of hypertension
 - Optimization of ART
 - Optimal management of these co-morbidities will likely reduce the risk of NCI