Pharmacokinetic Issues and CNS in HIV-infected Patients

Andrea Calcagno University of Torino, Italy

Fotografia di Michele D'Ottavio

10th Symposium on Neuropsychiatry and HIV – Barcelona 26-28 May 2017

Outline

- 1. Pharmacokinetics and the CNS
 - The CSF/brain PK?
 - Determinants of ARVs' passage into the CSF
 - New drugs
- 2. PK and antiretrovirals' efficacy in the CNS
 - ◆ CPE and other "scores" → CSF HIV RNA/NC
 - ARVs' strategies \rightarrow CSF HIV RNA/NC
- 3. PK and Neurotoxicity?

Nightingale S, et al. Lancet Neurology 2014

Summary of PK and CSF/CNS outcomes

Summary of PK and CSF/CNS outcomes

PK and the CNS

Penetrazione omogenea?

1. www.istockphoto.com 2. Williams K C et al. J Exp Med 2001.

Brain "Functional" Lymphatic Vessels

RRansohoff RM, et al. Nat Rev Immunol. 2003, Louveau et al. Nature 2015

Cerebrospinal fluid vs. brain tissue

Brain and Choroid P vs. CSF

- Simmons Association Index (SAI) Degree of a phylogenetic population structure
 - SAI ≤ 0.33 → compartmentalized population [Wang, et al., J. Virol 2001]

Methodological issues in measuring CNS PK

 Drug concentration in tissue homogenates: average conc in different CNS compartments→ preparation and measurments

2. Microdialysis: extracellular space (but availability and differences with different molecules)

CSF PK \rightarrow Brain PK

Compound	Homogen	CSF	Plasma UNB
Carbamazepine	2	1	1
Citalopram	1	1	1
Ganciclovir	2	1	14
Metoclopramide	1	1	3
Desmethylclozapine	1	1	6
Quinidine	3	2	6
Risperidone	2	2	2
9-OH-Risperidone	2	5	9
Thiopental	4	1	1

Liu, X., et al. Drug Metab. Dispos 2009. 37:787–793.

$\mathsf{CSF}\,\mathsf{PK} \xrightarrow{} \mathsf{ECF}\,\mathsf{PK}$

22 pharmacoresistant epilepsy patients (nine male, 13 female patients; age 15–54 years) with complex partial seizures or secondarily generalized seizures were involved.

Concentrations of carbamazepine (CBZ), 10hydroxy-carbazepine (10-OH-CZ, metabolite of oxcarbazepine), lamotrigine (LTG), levetiracetam (LEV), topiramate, or phenytoin were determined by using one to four catheters during IOMD in the medial temporal gyrus.

Brain tissue concentrations

A Simulated plasma concentration of efavirenz

B Simulated concentration of efavirenz in CSF

Simulated concentration of efavirenz in brain

Predicted Cmax

plasma 3184 ng/mL (2219 - 485)

CSF 49.9 ng/mL (36.6 - 69.7)

brainT 50343 ng/mL (38351 - 65799)

tissue to plasma ratio = 15.8

Observed Cmax - rats

plasma 69.7 ng/mL (44.9 - 130.6)

С

brainT 702.9 ng/mL (475.5 - 1018)

tissue to plasma ratio = 9.5 (7-10.9)

Determinants of ARVs' passage into the CSF

CSF flow and exchange

de Lange ECM, J Pharmacokinet Pharmacodyn (2013) 40:315–326

High variability in CSF exposure

Determinants of CSF PK

- Patient:
 - \triangle Age (\uparrow infants and older persons: \downarrow turnover?)
 - Δ Meningeal inflammation
 - △ CSF flow alterations
- Drug:
 - Ω Molecular Size
 - Ω Lipophilicity
 - Ω Plasma Protein Binding
 - Ω lonization
 - Ω Active Transport

Age

Croteau D, et al. CROI2012

Protein binding and penetration

	Published Unbound	CSF: Plasma	
Drug	Fraction	Ratio	Ratio
Nevirapine	40%	46%	115%
Efavirenz	0.5%	0.5%	100%
Abacavir	51%	36%	71%
Emtricitabine	96%	42%	44%
Etravirine	0,1%	4%	40%
Indinavir	40%	14%	35%
Raltegravir	17%	5.8%	34%
Darunavir	5%	1.4%	28%
Lamivudine	64%	15%	23%
Lopinavir	1-2%	0.23%	23%
Fosamprenavir	10%	1.3%	13%
Maraviroc	24%	2.9%	12%
Atazanavir	14%	1%	7%
Tenofovir	93-99%	5%	5%

Used with permission, Copyright reserved, S.Letendre

Etravirine in CSF is highly protein bound

Anh Nguyen¹, Steven Rossi¹, David Croteau²*, Brookie M. Best^{1,3}, David Clifford⁴, Ann C. Collier⁵, Benjamin Gelman⁶, Christina Marra⁵, Justin McArthur⁷, J. Allen McCutchan⁸, Susan Morgello⁹, David Simpson¹⁰, Ronald J. Ellis², Igor Grant¹¹, Edmund Capparelli¹ and Scott Letendre⁸ on behalf of the CHARTER Group†

Nguyen A, et al. JAC 2013

BBB and CSF concentrations

Transporters at the BBB and BCB

PG and CSF concentrations

Wyen C, et al. JAC 2011, Calcagno A, et al. AIDS 2012 and JAC 2013

Permeation of antiretroviral agents across the blood-brain barrier and interactions with efflux drug transporters

Binding affinity to P-glycoprotein

Most NRTIs are predicted to cross the blood-brain barrier due to their high passive influx.

PIs are unlikely to cross the blood-brain barrier but may modulate the activity of efflux transporters and increase the brain permeation of coadministered drugs.

Marzolini C, et al. Molecular Pharmaceutics 2013

PgP in MS and temporal lobe epilepsy

Loss of vascular P-gp expression in MS lesions

Increased expression of P-gp in hypertrophic GFAP-positive astrocytes

Kooij G, et al. Journal of Autoimmunity 2010; Feldmann M, et al. Lancet Neurol 2013

Inflammation and cART

Inflammation and pharmacokinetics: potential implications for HIV-infection

Sharon M. Seifert, Jose R. Castillo-Mancilla, Kristine M. Erlandson & Peter L. Anderson

Inflammation and cART

Absorption	Pharmacokinetic effect	Example drugs
Inflammatory effect		
Decreased gastric acidity	Increase or decrease in bioavailability	↓ Atazanavir[151], rilpivirine[152], elvitegravir[153]
Distribution		a promo tra contra national Transmissione
Increased alpha-1-acid glycoprotein	Increased total drug concentration	† Pls[154]
Decreased albumin	Decreased total drug concentration	↓Pls, efavirenz [154]
Increased P-gp	Increase or decrease in bioavailability and/or access to target site	Pls[155]
Metabolism		
Decreased hepatic CYP3A4	Decreased clearance	† PIs[156], NNRTIs [156], maraviroc [157], elvitegravir [153]
Decreased hepatic UGT	Decreased clearance	† INSTI[158]
Elimination		
Decreased hepatic ENT1 (SLC29a1)	Unknown	NRTIs[159]
Decreased renal MRP2 (ABCC2)	Increased plasma concentration	†Tenofovir[160]

PI: protease inhibitor; NNRTI: non-nucleoside reverse transcriptase inhibitor; NRTI: nucleoside reverse transcriptase inhibitor; arrows denote potential effects on plasma concentrations of indicated antiretroviral classes/agents.

LPS on Purified cultures of rodent microglia

De Rosa MF, et al. JCP 2013; Ellis K, JPP 2015; Kis O, et al. AAC 2016; Roy U, et al. PlosOne 2013; Turriziani O, et al. JMV 2008; Zhang JC, et al. Int J Mol Med 2014; Maffeo A, New Microbiologica 2004; Chaillou S, et al. HIV Clin Trials 2002; Dallas S, et al. J Neuroinflammation

Determinants of PI CSF to plasma ratios n=137 (79 DRV/r, 31 ATV/r e 27 LPV/r)

- Multivariate linear regression analysis adjusted for age, CSAR, time after dose and ABCB1 3435C>T
- Age (p=0.01) and CSF neopterin (p=0.05)

Scarvaglieri E, et al. In preparation

New drugs

Once-daily abacavir

- > 70 patients (61 on qd and 9 on bid)
- No significant difference, comparable to Capparelli AAC 2005 (higher ratios)

Calcagno A, et al. ICAR 2017

Rilpivirine

- 13 patients
- from NVP-containing regimens
- ratio= 1.4%
- CSF PK correlated with plasma PK and glucose/protein CSF levels
- No changes in cerebral metabolites

GM (95% CI)		Time elapsed from RPV dosing to LP					
	Total n=13	4h	6h	8h			
	n=13	n=6	n=3	n=4			
RPV concentration in CSF (ng/mL)	0.8(0.7-1.0)	0.8(0.6-1.0)	0.8(0.4-1.8)	0.8 (0.4-1.7)	0.96		
RPV CSF:Plasma ratio (%)	1.4 (1.2-1.6)	1.25 (1-1.6)	1.5 (0.8-2.7)	1.5 (0.8-2.8)	0.08		

Mora-Peris B, et al. JAC 2014

Dolutegravir

- 12 patients
- naive
- DGV + ABC/3TC

- ratio 0.51%
- at week 16 all patients had a CSF VL<50 copies/mL

Plasma				Plasma HIV-1 RNA			CSF HIV-1 RNA			CD4+ Cell Count				
Subject	Plasma DTG (μg/mL)	Plasma DTG Unbound (ng/mL)	DTG Unbound Fraction (%)	CSF DTG (μg/mL)	DTG CSF/Plasma Ratio (%)	Baseline Absolute Value (c/mL)	Week 16 Absolute Value (c/mL)	Change from Baseline (log ₁₀ c/mL)	Baseline Absolute Value (c/mL)	Week 16 Absolute Value (c/mL)	Change from Baseline (log ₁₀ c/mL)	Baseline Absolute Value (cells/mm ³)	Week 16 Absolute Value (cells/mm³)	Change from Baseline (cells/mm ³)
А	3.14	23.79	0.76	0.0139	0.44	38,697	<50	-3.00	2,600	<2	-3.41	527	1156	+629
В	3.65	30.38	0.83	0.0150	0.41	232,844	<50	-3.78	6,400	<2	-3.81	577	853	+276
С	4.92	23.96	0.49	0.0183	0.37	18,483	<50	-2.68	29,000	<2	-4.46	320	485	+165
D	3.27	17.95	0.55	0.0098	0.30	47,061	<50	-3.08	450	<2	-2.65	549	1147	+598
E	2.04	14.16	0.69	0.0128	0.62	24,222	<50	-2.79	29	<2	-1.46	404	511	+107
F	3.39	31.16	0.92	0.0115	0.34	137,948	<50	-3.55	1,000	<2	-3.00	345	713	+368
G	0.67	28.92	4.30	0.0137	2 <u>.</u> 04	11,712	<50	-2.48	4,400	<2	-3.64	457	627	+170
н	3.69	27.99	0.76	0.0152	0.41	3,976	<50	-2.01	140	<2ª	-2.15ª	863	615	-248
I	2.95	19.98	0.68	0.0123	0.42	3,684,952	236	-4.19	400,000	<2	-5.60	487	462	+175
J	4.83	32.09	0.66	0.0146	0.30	301,078	<50	-3.89	57,000	<2	-4.76	152	436	+284
К	3.13	22.17	0.71	0.0103	0.33	53,272	<50	-3.14	460	<2	-2.66	360	448	+88
L	0.64	3.81	0.59	0.0037	0.57	74,301	77	-2.98	9,000	5	-3.26	226	531	+305
A CCE LIN/ 1 DNA accomment performed on Day 141 (while the Meak 24 time window)														
Elvitegravir

	Timo		Elvitegravir	,	Cobicistat			
	(hours)	plasma	CSF	ratio	plasma	CSF	ratio	
	(nours)	(ng/mL)	(ng/mL)	14110	(ng/mL)	(ng/mL)		
Patient A	14	1389	11.7	0.0084	344	8.4	0.0244	
Patient B	24	676	2.4	0.0035	38	5.8	0.1526	
Patient C	24	1197	4.8	0.0040	23	7.3	0.3174	

Calcagno A, et al. AIDS Res and Human Retrov 2016

		Т	enofovir DF		GS 7340	Tissue concn ratio of GS 7340	
TAE	Tissue or fiuld	% Dose	Concn (µg-eq/g) ^b	% Dose	Concn $(\mu g - eq/g)^b$	to tenofovir DF	
IAF	Liver	12.40	38.3 ± 14.3	16.45	52.9 ± 4.7	1.4	
	Kidney	4.58	87.9 ± 38.4	3.78	80.2 ± 3.4	0.9	
	Lungs	0.03	0.53 ± 0.06	0.34	4.34 ± 0.15	8.2	
	Iliac lymph nodes	< 0.01	0.51 ± 0.14	0.01	5.42 ± 0.86	10.6	
	Axillary lymph nodes	< 0.01	0.37 ± 0.25	0.01	5.54 ± 0.42	14.8	
	Inguinal lymph nodes	< 0.01	0.28 ± 0.28	< 0.01	4.12 ± 0.44	15.0	
	Mesenteric lymph nodes	< 0.01	1.20 ± 0.64	0.04	6.88 ± 0.78	5.7	
	Thyroid gland	< 0.01	0.30 ± 0.20	< 0.01	4.78 ± 1.31	15.8	
	Pituitary gland	< 0.01	0.23 ± 0.07	< 0.01	1.80 ± 0.13	7.8	
	Salivary gland (left + right)	$<\!0.01$	0.45 ± 0.1	0.03	5.54 ± 0.10	12.3	
	Adrenal gland	< 0.01	1.9 ± 0.79	< 0.01	3.47 ± 0.13	1.8	
	Spleen	< 0.01	0.63 ± 0.11	0.17	8.13 ± 0.19	12.8	
	Pancreas	< 0.01	0.57 ± 0.62	0.01	3.51 ± 0.57	6.2	
	Prostate	< 0.01	0.24 ± 0.03	< 0.01	2.14 ± 0.38	9.1	
	Testes (left $+$ right)	0.02	1.95 ± 0.84	0.02	1.99 ± 0.74	1.0	
	Skeletal muscle	< 0.01	0.11 ± 0.00	0.01	1.12 ± 0.17	10.1	
	Heart	0.03	0.46 ± 0.17	0.15	1.97 ± 0.03	4.3	
	Femoral bone	< 0.01	0.08 ± 0.03	< 0.01	0.28 ± 0.05	3.5	
	Bone marrow	< 0.01	0.2 ± 0.08	< 0.01	2.05 ± 0.92	10.2	
	Skin	< 0.01	0.13 ± 0.06	< 0.01	0.95 ± 0.17	7.2	
	Abdominal fat	$<\!0.01$	0.16 ± 0.01	$<\!0.01$	0.90 ± 0.07	5.8	
_	Eye (left + right)	< 0.01	0.06 ± 0.03	< 0.01	0.24 ± 0.00	3.7	
	Brain	< 0.01	<lod< td=""><td>< 0.01</td><td><lod< td=""><td>ND</td></lod<></td></lod<>	< 0.01	<lod< td=""><td>ND</td></lod<>	ND	
	Cerebrospinal fluid	< 0.01	<lod< td=""><td>< 0.01</td><td><lod< td=""><td>ND</td></lod<></td></lod<>	< 0.01	<lod< td=""><td>ND</td></lod<>	ND	
	Spinal cord	< 0.01	<lod< td=""><td>< 0.01</td><td>0.04 ± 0.00</td><td>ND</td></lod<>	< 0.01	0.04 ± 0.00	ND	
	Stomach	0.11	1.93 ± 1.03	0.26	2.68 ± 0.27	1.4	
	Jejunum	1.34	3.01 ± 1.37	0.79	4.16 ± 0.73	1.4	
	Duodenum	0.49	4.96 ± 0.54	0.44	8.77 ± 1.13	1.8	
	Ileum	0.01	0.50 ± 0.19	0.16	4.61 ± 1.91	9.2	
	Large intestine	1.63	2.57 ± 0.33	2.65	47.2 ± 42.2	7.9	
	Gall bladder	$<\!0.01$	3.58 ± 1.99	0.04	25.0 ± 4.7	7.0	
	Bile	< 0.01	9.63 ± 9.42	0.22	40.5 ± 4.9	4.2	
	Feces	40.96	ND	0.19	ND	NA	
	Total GI tract contents	5.61	ND	21.64	ND	NA	
	Urine	23.72	ND	14.73	91.9 ± 34.0	NA	
	Plasma at 24 h	< 0.01	0.20 ± 0.09	< 0.01	0.20 ± 0.02	1.0	
	PBMCs at 24 h^c	< 0.01	ND	< 0.01	63.2 ± 15.5	ND	
	Whole blood at 24 h	< 0.01	0.85 ± 0.20	0.16	0.20 ± 0.00	0.2	

. . .

RTV vs. COBI in the CSF?

DRV/cobi vs. DRV/r n=7

PK and Antiretrovirals' efficacy in the CNS

Symptomatic CSF escape

Two case series and few case reports n=30

- Acute neurological symptoms
- Resistance associated
 mutations
- MRI alterations
- Strong immune response
- Reversibility

Canestri A, et al. CID 2010; Peluso MJ, et al. AIDS 2012; Wendel KA, et al. CID 2003; Bogoch II, et al. J Infect 2011; Binhgam MR, et al. J Int AIDS Soc 2011; Khouri MN, et al. JNV 2013; Imaz A, AIDS Res and Human Retrov 2014; Beguelin C, J Int AIDS Soc 2014, Spudich S. Curr Opin HIV/AIDS 2016.

Symptomatic CSF escape - India

- 1427 HIV+ patients in India
- 6 months of ART and HIV RNA <1000 copies/mL
- 9.7% with neurological disease at baseline
- Median ART duration 66 months (36-105)
- 79.4% on NNRTIs and 19.8% on PIs
- gait ataxia and tremolousness

31 cases of incident neurological disorders with **20 patients with HIV-encephalitis**

Symptomatic CSF escape – India (2)

First line EFV, HIV RNA once a year, HAART change to PI/r (mostly ATV/r) with recycled NRTIs, very low CD4 nadir

Dravid A, HIV Drug Therapy 2016 #214

Longitudinal - Eden

Twenty-seven (36%) patients had ≥1 CSF-HIV-RNA >20 copies/ml (23% >50), in median 50 (IQR 32-77) copies/ml.

Patients

Eden A, et al. JID 2016

CSF low level replication &

Eden A, et al. JID 2010; Yilmaz A, et al. JAIDS 2008; Dahl V, et al. AIDS 2014; Motta I, et al. Under review

Determinants WMA in HIV

- retrospective, cross-sectional study
- 254 patients: 70% male, 53% white, mean age 42 years, median current CD4 count 240 cells/mm3, and 41% not taking antiretroviral therapy (ART)

WMA and CSF escape

• 163 LPs

CPE and other scores

Studies on the CPE score

Reference	n	Design		CPE CSF VL	CPE NC testing	Areas NC	CPE cut off
Cysique et al.	37	prospective	single arm	lower CSF VL	better	6	≥2
Tozzi et al.	185	prospective	single arm	not done	better	4 and 8	no
Marra et al.	26	prospective	single arm	lower CSF VL	worse	8	≥2
Winston et al.	30	prospective	randomized	not done	better	Cogstate	no
Smurzynski et al.	2636	prospective	single arm	not done	better >3 drugs	3	no
Arendt et al.	3883	prospective	single arm	lower CSF VL	better	2	no
Garvey et al.	101	retrospective	single arm	not done	ot done no effect		no
Rourke et al.	545	prospective	single arm	not done	better	4	≥1.5 (2008)
Robertson et al.	860	prospective	randomized	not done	no effect	4	no
Ciccarelli et al.	101	prospective	single arm	not done	better	8	≥6
Kahouadji et al.	54	prospective	single arm	not done	worse	2	no
Ellis et al.	49	prospective	randomized	no effect	no effect – trend to lower	8	(2.5 vs. 1)
Vassallo et al.	246	prospective	controlled	not done	stable or better	8	(8.1 vs. 6.9)
Baker et al.	64	prospective	single arm	not done	no effect	4	7
Carvahal	417	prospective	single arm	not done	better	4	no

Antiretroviral penetration into the CNS and incidence of AIDS-defining neurologic conditions

ABSTRACT

Ellen C. Caniglia

Amy Justice, PhD

Roger Logan, PhD

Caroline Sabin, PhD

Alan Winston, MD

Jose M. Miro, PhD

Ashley Olson, PhD

Ard van Sighem, PhD

Daniel Podzamczer, PhD

José Ramón Arribas, MD

Santiago Moreno, PhD

Laurence Meyer, PhD

Jorge del Romero, MD

Heiner C. Bucher, MD

Gilles Wandeler, MD

Georgia Vourli, MSc Athanasios Skoutelis, MD

Emilie Lanoy, PhD Jacques Gasnault, MD

Dominique Costagliola,

François Dabis, PhD

Janet Tate, PhD

Lauren E. Cain, PhD

Objective: The link between CNS penetration of antiretrovirals and AIDS-defining neurologic disorders remains largely unknown.

Methods: HIV-infected, antiretroviral therapy-naive individuals in the HIV-CAUSAL Collaboration who started an antiretroviral regimen were classified according to the CNS Penetration Effectiveness (CPE) score of their initial regimen into low (<8), medium (8–9), or high (>9) CPE score. We estimated "intention-to-treat" hazard ratios of 4 neuroAIDS conditions for baseline regimens with high and medium CPE scores compared with regimens with a low score. We used inverse probability weighting to adjust for potential bias due to infrequent follow-up.

Results: A total of 61,938 individuals were followed for a median (interquartile range) of 37 (18, 70) months. During follow-up, there were 235 cases of HIV dementia, 169 cases of toxoplasmosis, 128 cases of cryptococcal meningitis, and 141 cases of progressive multifocal leukoencephalopathy. The hazard ratio (95% confidence interval) for initiating a combined antiretroviral therapy regimen with a high vs low CPE score was 1.74 (1.15, 2.65) for HIV dementia, 0.90 (0.50, 1.62) for toxoplasmosis, 1.13 (0.61, 2.11) for cryptococcal meningitis, and 1.32 (0.71, 2.47) for progressive multifocal leukoencephalopathy. The respective hazard ratios (95% confidence intervals) for a medium vs low CPE score were 1.01 (0.73, 1.39), 0.80 (0.56, 1.15), 1.08 (0.73, 1.62), and 1.08 (0.73, 1.58).

Conclusions: We estimated that initiation of a combined antiretroviral therapy regimen with a high CPE score increases the risk of HIV dementia, but not of other neuroAIDS conditions. *Neurology*® **2014;83:134-141**

Prospective studies

CSF IQ₉₅

Calcagno A, et al. CID 2014 e unpublished

CSF IQ₉₀ INSTIs

Microglial Activation

Ex vivo efficacy

Patients' CSF on PBMCs, glioblastoma/astrocytoma and astrocytoma cells

- TDF/FTC+LPV/r+MVC > TDF/FTC+RPV
- CSF LPV and RPV concentrations associated with antiviral effect and MRS changes

Mora-Perris B, et al. JAC 2015

Microglia-targeted treatment?

Table 1. Published *in vitro* EC_{50} acute infection values for various ARV drugs in primary macrophage cell cultures and the calculated ME scores

	Acute infection in	
ARV drug	macrophages EC ₅₀ , nM	ME score ^a
NRTI		
Abacavir sulfate	300	3
Didanosine	50	20
Emtricitabine ^b	80	12.5
Lamivudine	20	50
Stavudine	240	4
Tenofovir disoproxil fumarate	20	50
Zalcitabine	3	333
Zidovudine	20	50
NNRTI		
Delavirdine	10	100
Efavirenz	10	100
Nevirapine	50	20
Protease inhibitor		
Amprenavir ^c	10	100
Indinavir	60	17
Nelfinavir	80	12.5
Ritonavir	120	8.3
Saquinavir	50	20
Fusion inhibitor		
Enfuvirtide	20	50

PK and Antiretroviral strategies

CSF escape e LLV

CSF RAMs in 5 pts in the LLV group and 6 in the clinical cohort

Antiretroviral neuropenetration scores better correlate with cognitive performance of HIV-infected patients after accounting for drug susceptibility

							Speed of	of	Fine mo	otor		
	Global cog	nitive			Attenti	on	mental pro	cessing	function	ning	Langua	ge
	impairment	(HAND)	Memory imp	airment	impairm	impairment		impairment		ient	impairment	
	aOR		aOR		aOR		aOR		aOR		aOR	
	(95% CI)	<i>P</i> -value	(95% Cl)	<i>P</i> -value	(95% CI)	<i>P</i> -value						
CPE	0.83	0.192	0.82	0.149	1.20	0.253	0.89	0.436	1.10	0.453	0.90	0.456
	(0.63, 1.10)		(0.63, 1.07)		(0.88, 1.65)		(0.65, 1.20)		(0.86, 1.42)		(0.67, 1.19)	
GSS _{ANRS}	0.55	0.116	0.64	0.196	1.68	0.254	1.28	0.547	1.92	0.084	0.58	0.149
	(0.26, 1.15)		(0.32, 1.26)		(0.69, 4.12)		(0.58, 2.85)		(0.92, 4.00)		(0.27, 1.22)	
GSS _{HIVDB}	0.60	0.135	0.83	0.542	1.14	0.753	1.13	0.734	1.66	0.120	0.74	0.376
	(0.31, 1.17)		(0.45, 1.51)		(0.52, 2.50)		(0.56, 2.27)		(0.88, 3.15)		(0.38, 1.44)	
GSS _{REGA}	0.64	0.194	0.74	0.347	1.33	0.487	1.47	0.321	1.97	0.060	0.56	0.101
	(0 32 1 26)		(0.40, 1.38)		(0.59, 2.98)		(0.69, 3.13)		(0.97, 3.88)		(0.28, 1.12)	
CPE-GSS _{ANRS}	0.75	0.022	0.83	0.091	1.13	0.431	0.94	0.607	1.22	0.106	0.89	0.348
	(0.58, 0.96)		(0.66, 1.03)		(0.84, 1.53)		(0.72, 1.21)		(0.96, 1.55)		(0.70, 1.13)	
CPE-GSS _{HIVDB}	0.77	0.038	D.89	0.274	1.06	0.713	0.94	0.654	1.17	0.178	0.93	0.562
	(0.61, 0.99)		(0.72, 1.10)		(0.79, 1.42)		(0.73, 1.22)		(0.93, 1.48)		(0.74, 1.18)	
CPE-GSS _{REGA}	0.78	0.038	D.86	0.158	1.05	0.772	0.97	0.819	1.24	0.078	0.88	0.269
	(0.61, 0.99)		(0.69, 1.06)		(0.78, 1.40)		(0.76, 1.25)		(0.98, 1.56)		(0.69, 1.11)	

Patient A.G.

Beclomethasone/formeterol 2 puff x 2 Tiotropium (bromide) 2 puff Pregabalin 150 mg x 2 Oxcarbamazepine 300 mg x 2 • Pantoprazole 20 mg Delorazepam 0.5 mg x 2 Flumazepam 15 mg **Methadon** 125 mg (!) Calcium/colecalciferol 1g/d – XXVIII/w Ceftazidim 1g x3 • Atazanavir 200 mg x 2 Ο Amikacin 600 mg Raltegravir 400 mg x 2 methylprednisolone 20 mgx2 Ο

Symptomatic CSF escape

CSF HIV RNA 579 copies/mL (plasma >20)

	plasma PK	CSF PK					
ATV	54	0.9	1.7%				
RAL	296	19	6.4%				
Pantoprazo lowers ATV 90%)	ole (70-	RAL fu monoth the CS	inctional herapy in SF/CNS				
N155H and K95Q on CSF							

Maraviroc effect

- Antiviral? CSF viruses often R5 tropic
 Astrocyte infected via CXCR4
- Protective for SIV infection in macaques
- Maraviroc intensification
 - increase in MRS Naa/Cr (neuronal integrity)
 - reduction in CSF CXCL10 (IP-10)
 - better with higher MVC plasma conc
 - Reduction in CD16+ monocytes, monocyteassociated HIV DNA and NC function

Maraviroc effect (2)

14 virally-suppressed (blood and CSF) HIV+ males on stable cART with recent progression to HAND

Open-label RCT of MVC-intensification

MVC DOSE!

trial	Study drugs	Virological Efficacy	Immunologica I efficacy
MODERN	DRV/R + MVC 150 QD	Inferior (stopped)	equal
A4401078	ATV/R + MVC 150 QD	Inferior (slightly)	equal
VEMAN	LPV/rR+ MVC 150 QD	equal	superior

PK and Neurotoxicity

HIV Tat protein and amyloid- β peptide form multifibrillar structures that cause neurotoxicity

Alina Hategan¹, Mario A Bianchet^{2,3}, Joseph Steiner¹, Elena Karnaukhova⁴, Eliezer Masliah⁵, Adam Fields⁵, Myoung-Hwa Lee¹, Alex M Dickens², Norman Haughey², Emilios K Dimitriadis⁶ & Avindra Nath¹

Hategan A, et al. Nature Structural and Molecular Biology 2017

Neurotoxicity

1 In vitro and in macaques neuronal toxicity

- (2) Improvement in neurocognitive functioning at ARVs interruption (better in EFV recipients);
- 3 Beta amyloid metabolism interference (EFV and PIs)
- **4 EFV** and neurocognitive disorders
- 5 PIs disrupt astrocytic glutamate transporter function and neurobehavioral performance

6 Might be dose-dependant (EFV)

Tovar-y-Romo LB, et al. J Pharmacol Exp Ther, 2012; Robertson K, et al. JNV 2012; Akay C, et al. JNV 2014; Giunta B, et al. Mol Brain 2011; Robertson K, et al. Neurology 2010; Achim CL, et al. J Neuroimmune Pharmacol 2009; Ortega M and Ances BM, J Neuroimmune Pharmacol 2014; Ciccarelli N, et al. Neurology 2011; Vivithanaporn P, et al. AIDS 2016

In vitro neurotoxicity

- Fetal rat cortical neuron cultures
- Some degree of functional injury seen with all drugs
- EFV>others> FTC,DRV,MVC
- no additive effect

Neurotoxicity @ CROI2016

		Mitoc	Mitochondrial Assay			Neurite Outgrowth Assay					
		MMP	ROS	Cyt	totx	<u>Outgrowth</u>		Re	Retraction		tx
					le	ength	branch	length	branch		
	Abacavir	1.	6	1.1	-0.2	1.	1 1	0	0.1	-0.2	-0.6
INKTI	Tenofovir	1.	6	0.0	-0.5	0.	5 C	.5 -	-1.6	-1.0	0.4
NNRTI	Efavirenz	-13.	6	0.5	-6.8	2.	9 1	1 -	-3.3	-0.6	-2.6
	Rilpivirine	-6.	2	1.0	-0.7	1.	3 1	0 -	-2.8	-1.9	-2.2
INSTI	Elvitegravir	-10.	4	2.1	-1.5	0.	8 (.5 -	-1.5	-1.2	-1.7
	Dolutegravir	1.	0	0.5	-0.5	3.	2 4	.0 -	-0.5	0.3	-0.5
PI	Atazanavir	-2.	4	1.9	-0.5	1.	4 1	0 -	-0.5	-1.3	-0.5
	Darunavir	2.	1	0.4	-0.4	1.	2 (.8	0.0	-0.3	-0.8
	Ritonavir	-5.	2	2.8	-0.4	0.	2 (-1.7	-0.5	-0.8
PK ennancer	Cobicstat	-12.	0	7.7	1.0	1.	1 1	.1 -	-1.6	-2.4	-1.7
Control	Menadione	-12.	0	10.6	-20.9						
CONTROL	Staurosporine					7.	1 9		-0.9	0.2	-1.2
	BIO					-2.	2 -(.4 -	-3.6	-2.2	0.6
										Max.	Z-sc
									_	5	

EFV dose and NP symptoms

- Dose reductions (either TDM or PG/TDM based) were associated with improvements in neuropsychiatric symptoms
- PG (CYP2B6, CAR) associated with symptoms, drug discontinuation and suicidaility
- ENCORE1: 400 mg EFV associated with fewer CNS adverse events vs. 600 mg
- Single-dose EFV: PK and PG association with Grooved pegboard

Obsted association between EFV use and HAND

Haas et al. AIDS 2004; Gatanaga et al., CID 2011; Wyen C et al J Antimicrob Chemother 2011; Ciccarelli et al., Neurology 2011; Johnson et al. BJCP 2012; Winston A, et al. CID 2015; Mollan KR, et al. IAS 2015; Johnson DH, et al. BJCP 2012

EFV/8-OH EFV and NC performances

8-OH EFV showed in vitro direct neurotoxicity

Table 4.	Correlation Between Cerebrospinal Fluid 8-Hydroxy
Efavirenz	Exposure and Patient-Completed Questionnaires

Parameter	Week	Spearman Correlation Coefficient	P Value
DASS-Depression	48	0.20	.31
DASS-Anxiety	48	0.11	.58
DASS-Stress	48	0.38	.04
ESQ	4	-0.43	.02
ESQ	48	0.13	.05
SF-12-Physical score	48	0.13	.50
SF-12-Mental score	48	-0.38	.05

Abbreviations: DASS, Depression Anxiety Stress Scales; ESQ, efavirenz symptom questionnaire; SF-12, 12-item short form.

8-OH-EFV concentration (ng/mL)

Tovar-y-Romo LB, et al. J Pharmacol Exp Ther 2012 ; Winston A, et al. CID 2015; Sandkovski U, et al. JAC 2017
Dolutegravir

- Contrasting data on DTG neuropsychiatric side effects
 - no signal in RCTs
 - higher incidence in SINGLE (vs. efavirenz)
 - higher incidence in some but not all observational studies: mild and reversible
- Neurotoxicity?
- PK matters?
 - higher incidence in patients on concomitant abacavir, female and older subjects

De Boer MG, AIDS 2016; Hoffman C, et al. HIV Medicine 2017; Fettiplace A, et al. JAIDS 2016; Bonfanti P, et al. AIDS 2017

Dolutegravir and PK?

	Drug	CPE score	95% Inhibitory Quotients	Macrophage efficacy score	in vitro neurotox
NRTIS	Abacavir	3	NA	3	+
	Emtricitabine	3	NA	12.5	0
	Lamivudine	2	NA	50	+
	Tenofovir disoproxil fumarate	1	NA	50	0
	Zidovudine	4	NA	50	+
NNRTIS	Nevirapine	4	NA	20	+
	Efavirenz	3	6.4	100	++
	Etravirine	2	5.1	NA	+
	Rilpivirine	3?	NA	NA	+
PIS	Atazanavir	2	0.4	NA	+
	Atazanavir/r	2	2.8	NA	+
	Darunavir/r	3	8.2-18.5	NA	0
	Lopinavir/r	3	1.5	NA	NA
INIs	Raltegravir	3	0.7	NA	+
	Elvitegravir/r	3?	NA	NA	+
	Dolutegravir	4?	NA	NA	+?
Els	Maraviroc	3	NA	NA	0
	Enfuvirtide	1	NA	50	NA

HIV DNA/CD4 nadir

1: Circulating HIV DNA Correlates With Neurocognitive Impairment in Older HIVinfected Adults on Suppressive ART. Oliveira MF et al. Sci Rep. 2015

2: Peripheral blood mononuclear cells HIV DNA levels impact intermittently on neurocognition. Cysique LA, et al. PLoS One. 2015

3: HIV DNA in CD14+ reservoirs is associated with regional brain atrophy in patients naive to combination antiretroviral therapy. Kallianpur KJ et al. AIDS. 2014

4: Peripheral blood HIV DNA is associated with atrophy of cerebellar and subcortical gray matter. Kallianpur KJ, et al. Neurology. 2013

5: Regional cortical thinning associated with detectable levels of HIV DNA. Kallianpur KJ et al. Cereb Cortex. 2012

6: Amount of HIV DNA in peripheral blood mononuclear cells is proportional to the severity of HIV-1-associated neurocognitive disorders. et al. J Neuropsychiatry Clin Neurosci. 2009

A decreasing CD4/CD8 ratio over time and lower CSF-penetrating antiretroviral regimens are associated with a higher risk of neurocognitive deterioration, independently of viral replication

Matteo Vassallo^{1,2} · R. Fabre³ · J. Durant¹ · C. Lebrun-Frenay⁴ · H. Joly⁴ · M. Ticchioni⁵ · F. DeSalvador¹ · A. Harvey-Langton¹ · B. Dunais^{1,3} · M. Laffon⁴ · J. Cottalorda⁶ · P. Dellamonica¹ · C. Pradier³

Acknowledgements

Prof. G Di Perri Prof. S Bonora Laura Trentini Cristina Tettoni Roberto Bertucci Sabrina Audagnotto Letizia Marinaro Ilaria Motta Alice Trentalange Elisabetta Scarvaglieri Elisa Scabini Chiara Cardellino

Prof. P Cassoni Luca Bertero

Daniele Imperiale Cristiana Atzori Daniela Vai Alessandra Romito

Valeria Ghisetti Tiziano Allice Enrica Amasio Sebastiano Catera

Prof. F Condorelli Ilaria Gnemmi

Antonio D'Avolio Jessica Cusato Marco Simiele Alessandra Ariaudo Fabio Favata

Prof. S Letendre