Hot Topics on CNS and HIV...From CROI

Scott Letendre, M.D.

Professor of Medicine and Psychiatry University of California, San Diego

Disclosures

Research funds were paid to UC San Diego on behalf of Dr. Letendre:

- National Institutes of Health
- Gilead Sciences

Dr. Letendre was paid for an advisory board:

• ViiV Healthcare

Dr. Letendre was paid for a lecture:

• None

HAND Diagnosis-Related

- Novel Multivariate Method
- Depression
- Pathogenesis
 - Host (Aging)
 - -HIV
- Treatment

Background

Cognitive impairment reportedly remains prevalent in the cART era.

How do we assess impairment?

- Neuropsychological tests
- Define a threshold

Novel multivariate method (NMM) using the Mahalanobis distance

Analogous to a multivariate standard deviation

De Francesco et al. BMC Infect Dis. 2016 Oct 28;16(1):617.

Background

The relationships with neuroimaging measures have been **inconsistent**.

The HAND (or 'Frascati') and global deficit score (GDS) have <80% specificity.

Novel multivariate method (NMM) allows specification of the expected false positive rate *a priori*.

Specificity = 1 – false positive rate

Imperial College

London

Underwood et al, HIV medicine (2017) [Abstract]

Methods – cognitive function

Neuropsychological test battery 139 PLWH - all plasma HIV RNA <50 copies/mL (testing attention, executive function, language, - all had MRI learning, memory, motor function and HARTER processing speed) **Cognitive impairment** Raw scores converted defined using Frascati¹, to demographically GDS² criteria and a adjusted cognitive novel multivariate domain T-scores method (NMM) with 85% a priori specificity critical value = $- \int_{\alpha}^{(n-1)^2} \cdot \beta_{\alpha, \frac{p}{2}, \frac{(n-p-1)}{2}}$ Where:

¹Antinori A et al, Neurology (2007); ²Carey CL et al, J Clin Exp Neuropsyc (2004); ³Underwood et al, HIV medicine (2017) [Abstract]

http://www.bhiva.org/documents/Conferences/2017Liverpool/Presentations/Posters/commended -poster-presentations/P83.pdf β = the critical value from the β distribution with parameters $\frac{p}{2}$ and $\frac{(n-p-1)}{2}$ with α =0.05 (i.e. corresponding to the bottom 5th percentile of a normative population)

n = the number of subjects

p = the number of domains/tests

Imperial College

More Conservative Classification Approach That Correlates Better with Structural Imaging

NMM – grey matter voxelwise analysis

Grey matter voxel based morphometry group comparison. Areas with significantly (p < 0.05) lower grey matter volume in those with NMM impairment vs. no impairment coloured by the t-statistic - corrected for multiple comparisons (TFCE) and adjusted for age, intracranial volume, scanner and comorbidity status. Statistical image overlaid on MNI 152 T1

Depression Is Associated with NCI

Mellgren et al, CROI 2018, Abstract 422

EACS Guidelines 2017

Serotonin Transporter Expression Increases with Duration of SIV Infection

Shah et al, CROI 2018, Abstract 426

NMM Method is Also Associated with Older Predicted Brain Age

Underwood et al, CROI 2018, Abstract 125

HIV may Accelerate Aging to a Greater Extent in the Brain

Levine et al, J Neurovirol 2015, Epub ahead of print

Amyloid Uptake is Greater in HIV+ Adults in Their 50s

Sacktor et al, CROI 2018, Abstract 438

ART Drugs May Alter Amyloid Processing

EFV Reduces Microglial Phagocytosis of Aβ₁₋₄₂

Brown et al, PLoS ONE 2014, 9(4): e95500

EFV

HIV-Associated Global and Thalamic Hypometabolism on FDG-PET

ind Opportunistic Infections

Hammoud et al, CROI 2018, Abstract 440

Neurocognitive Decline Associated with Evidence of Insulin Resistance

Intranasal Insulin May be Beneficial

Ott et al, Diabetes, Obesity and Metabolism 2012, 14: 214–221

HIV and Methamphetamine May Shorten Telomeres

and Opportunistic Infections

Mehta et al, CROI 2018, Abstract 760

NRTIs May Inhibit Telomerase, Which is a Reverse Transcriptase

Inconsistent Clinical Evidence of ART Effects on Telomere Length

	TDF Exposed		Mean differences by treatment group	
Variable	Exp(coef.) CI (95%)	Р		Mean difference (95% CI
Age (Ref. <45 vrs)			Unadjusted	0.031 (0.008-0.054); p=0.009
≥45/50	0.99 (0.90 to 1.10)	0.908	Gender -	0.030 (0.007-0.054); p=0.010
≥50	0.92 (0.83 to 1.01)	0.074	Age	0.030 (0.007-0.052); p=0.011
Father's age at birth (per vr)	_		Tobacco -	0.033 (0.010-0.056); p=0.005
Race (Ref. Caucasic)			Alcohol -	0.031 (0.008-0.054); p=0.009
Other	\rightarrow		Statins -	0.034 (0.011-0.037); p=0.004
Education (Ref. Primary)			Mode of HIV infection –	0.033 (0.010-0.056); p=0.015
Secondary	1.12 (1.03 to 1.22)	0.006	Time since HIV diagnosis –	0.031 (0.008-0.054); p=0.009
University	1.10 (1.00 to 1.21)	0.044	Baseline HIV RNA -	0.030 (0.007-0.053); p=0.010
Income (Ref. Low)			Baseline CD4+ -	0.031 (0.008-0.054); p=0.009
High	0.92 (0.86 to 0.99)	0.031	CD4 hadir –	0.032 (0.008-0.055); p=0.008
Time with HIV infection (Ref. <10 yrs)			Baseline CD4+ /CD8+ -	0.030 (0.006-0.054); p=0.013
≥10–20				0.030 (0.006-0.054); p=0.014
≥20	<u> </u>			0.050 (0.007 0.055); p=0.011
Time on ART (Ref. <10 yrs)			-0.02 0.00 0.02 0.04 0.0	06
≥10–20	0.89 (0.82 to 0.98)	0.017	Favours: BAL+DRV/r TDF/FTC+DRV/r	
≥20	0.91 (0.80 to 1.03)	0.120		

Montejano et al, J Acquir Immune Defic Syndr 2017;76:102–109

Stella-Ascariz et al, CROI 2018, Abstract 758

p16^{INK4a} is a Marker of Cellular Senescence and Does Not Normalize in CD8+ T-Cells with Suppressive ART

Ribeiro et al, PLoS One. 2016;11(11):e0166759

Age and NRTI Metabolite/ Endogenous Nucleotide Ratios

- Cellular senescence may alter
 intracellular metabolism of NRTIs
- The ratio of NRTI metabolites to their endogenous nucleotides may be a marker of toxicity
- <u>Hypothesis</u>: Older age will be associated with higher TFVdp:dATP and FTCtp:dCTP ratios

Dumond et al, CROI 2018, Abstract 464

Sex-Based Differences in Correlates of NCI

Heme Oxygenase-1: A detoxifying and anti-inflammatory enzyme

Heme Oxygenase (HO-1)

- Highly inducible and ubiquitously expressed
- Detoxifying and cytoprotective antioxidant enzyme
- Inflammation, oxidative stress, and cellular injury

Gill et al, CROI 2018, Abstract 126

HO-1 promoter region (GT)n dinucleotide repeat microsatellite polymorphism

Diseases with IMPROVED clinical outcome associated with

SHORTER HO-1 promoter region (GT)n repeats

- <u>Cardiovascular disease (coronary artery disease, complications post angioplasty)</u>
- Pulmonary disease (emphysema, acute chest syndrome)
- Neurological disease (ischemic stroke, cerebral aneurysm)
- Gastrointestinal disease (necrotizing acute pancreatitis)
- Infectious disease (sepsis, pneumonia)
- Immune disease (rheumatoid arthritis)

5

HO-1 Promoter Repeats in Brain Tissue Are Associated with HIV Encephalitis

HO-1 Promoter Repeats in Blood-Derived DNA Are Associated with Symptomatic HAND

Exosome Discovery in CSF Neurons

No NCI

NCI

Study methods

- Cross sectional CSF and blood from participants with HIV on ART in A5321 at 19 ACTG sites; participants without HIV in New Haven, CT, USA.
- HIV persistence measures:

HIV RNA from cell free samples: single copy assay sensitivity in CSF supernatant (3-5 ml) and blood plasma (5 ml).¹

HIV DNA and **RNA from cells (cell-associated)**: qPCR assays in PBMC and in cell pellets derived from ~13 mls of CSF. Measures were normalized for amplifiable CCR5 copies.²

 Inflammation biomarkers: (IL-6, IP-10, neopterin, MCP-1, sCD14, sCD163, TNF-α) by ELISA in cell-free CSF and plasma.

CROI Conference on Retroviruses and Opportunistic Infections

Spudich et al, CROI 2018, Abstract 119

¹ Cillo AR, et al., J Clin Microbiol 2014; ²Hong F, et al., J Clin Microbiol 2016.

HIV detection in CSF in participants on suppressive ART

CA-HIV = cell-associated HIV Spudich

HIV DNA detection in CSF cells did not significantly associate with the level of PBMC HIV DNA or persistent viremia

Blood HIV Measures	CSF CA-HIV DNA Not Detected (n=36)	CSF CA-HIV DNA Detected (n=33)	P value*
Blood CA-HIV DNA (cps/10 ⁶ CD4+ T cells)	375 (215-909)	723 (147-1209)	0.33
Blood CA-HIV RNA (cps/10 ⁶ CD4+ T cells)	42 (13-145)	37 (11-156)	0.85
Plasma HIV RNA by iSCA (cps/ml)	<0.4 (<0.4-1.9)	0.4 (<0.4-3.3)	0.46

*Exact Wilcoxon test

• Detection of CSF CA-RNA also did not associate with blood HIV measures.

HIV DNA detection in CSF cells did not significantly associate with pre-ART measures or duration of ART

Characteristic (median (IQR))	CSF CA-HIV DNA Not Detected (n=36)	CSF CA-HIV DNA Detected (n=33)	p value
Pre-ART blood CD4+ T cell count (cells/mm ³)	300 (193-385)	285 (129-335)	0.27
Pre-ART CD4:CD8 ratio	0.4 (0.2-0.5)	0.2 (0.1-0.5)	0.09
Pre-ART plasma HIV RNA level (log ₁₀ cps/ml)	4.6 (<0.4-1.9)	4.7 (<0.4-3.3)	0.15
Duration of ART (years)	4.6 (4.2-4.9)	4.7 (4.5-5.2)	0.95

*Exact Wilcoxon test

HIV RNA detection in cell-free CSF did significantly associate with plasma viremia

Blood HIV Measures	CSF HIV by iSCA Not Detected (n=66)	CSF HIV by iSCA Detected (n=3)	P value*
Blood CA-HIV DNA (copies/10 ⁶	530	1136	0.62
CD4+ T cells)	(188-1129)	(188-129)	
Blood CA-HIV RNA (copies/10 ⁶	37	297	0.39
CD4+ T cells)	(13-143)	(5-503)	
Plasma HIV RNA by iSCA	<.4	5.9	0.007
(copies/ml)	(<0.4-2.2)	(2.9-23.1)	

*Exact Wilcoxon test

Poorer Neurocognitive Performance Associated with CSF HIV DNA Despite Long-Term ART

Robertson et al, CROI 2018, Abstract 403LP

CSF Viral Escape May Result From the Combination of Drug Resistance and Poor Drug Distribution

Mukerji, et al. CROI 2018, Abstract 123

Drug Resistance, CSF Viral Escape, and Adjusted CPE

Canestri et al, Clinical Infectious Diseases 2010, 50: 773–778

Fabbiani et al, Antiviral Ther 2015, 20: 441-7

P-value

0.015

0.057

0.031

0.040

0.082

0.086

0.012

0.044

0.064

Correlates of Symptomatic and Asymptomatic CSF Viral Escape Differ

Asymptomatic

	AOR	95% CI		р	
Age (10 yrs increase)	1.88	1.03	3.42	0.039	
Nadir CD4<200 cell/mmc	3.69	1.85	7.37	<0.001	
CD4 at LP, cell/mmc					
<200	1.00				
201-350	1.42	0.30	6.63	0.656	
350 or more	1.42	0.19	10.56	0.732	
CPE score	0.75	0.48	1.18	0.217	
Calendar year of LP					
1999-2003	1.00				
2004-2008				0.75	
2009-2014	0.08	0.02	0.37	0.001	
BBB dysfunction	5.06	1.26	20.28	0.022	

Symptomatic

	AOR	95	% CI	р
Male gender	0.37	0.15	0.89	0.026
CSF number of cells>5/mmc	4.95	1.97	12.41	0.001
CSF proteins >50 mg/dl	1.65	0.65	4.18	0.289

Pinnetti, et al. CROI 2018, Abstract 447

Spinal Cord May be an Independent Compartment from the Brain and CSF

Mankowski, et al. CROI 2018, Abstract 124

SIV DNA and RNA were Higher in Spinal Cord Than in Brain

After ART Discontinuation

Mankowski, et al. CROI 2018, Abstract 124

SIV RNA ISH

6/6 primary cultures SIV RNA+ by qRT-PCR

Mankowski, et al. CROI 2018, Abstract 124

DTG and CNS Adverse Events

DTG Discontinuation Not Concentration-Dependent

Risk factors for NPAEs leading to DTG discontinuation	RH	95 % CI	р
Female, versus male gender	2.31	1.12-4.74	0.03
Older age (> 60 years), versus younger age	2.14	1.10-4.18	0.025
Depressive disorders, versus no	1.00	0.54-1.88	0.952
Other neuropsychiatric diagnoses, versus no	0.93	0.29-3.00	0.896

Hoffmann, et al. CROI 2018, Abstract 424

Dolutegravir, Age, Sleep, & Mood

Courtesy Andrea Calcagno and Marta Boffito

	C _{max}	AUC ₀₋₂₄
Pittsburgh Sleep Quality Ind	ex	
Duration of sleep (n=36)	0.330 (0.05)	0.353 (0.03)
Sleep disturbance (n=38)	-0.100 (0.55)	-0.121 (0.47)
Sleep latency (n=37)	-0.247 (0.14)	-0.053 (0.75)
Day dysfunction (n=37)	-0.181 (0.28)	-0.206 (0.22)
Sleep efficiency (n=35)	0.120 (0.49)	0.032 (0.86)
Sleep quality (n=38)	-0.212 (0.20)	0.207 (0.21)
Medication (n=37)	0.016 (0.92)	0.021 (0.90)
PSQI total (n=32)	0.074 (0.69)	-0.042 (0.82)

Elliot et al, 18th International Workshop on Clinical Pharmacology of Antiviral Therapy, 2017

Borghetti et al, Italian Conference on AIDS and Antiviral Research, 2017

ART Regimens Differ in Imaging Findings After 24 Weeks

Cortical grey matter volume (mm³)

Subcortical grey matter volume (mm³)

	LEFT SIDE		m see lise	RIGH	a ciature	
	ABC/3TC+EFV	TDF/FTC+ATV/r	p value	ABC/3TC+EFV	TDF/FTC+ATV/r	p value
THALAMUS	-18.5	153.6	0,4009	77.6	226.1	0,1558
CAUDATE	-7.8	16.1	0,1734	-132.9	14.2	0,019
PUTAMEN	8.6	165.9	0,4689	36.3	68.8	0,3692
PALLIDUM	-108.8	-5.6	0,235	-13.9	47.7	0,3106
HIPPOCAMPUS	-12.1	21.2	0,6639	-40.8	108.2	0,0257
AMYGDALA	31.5	69.2	0,4341	-63.0	126.1	0,0034
ACCUMBENS AREA	-23.7	2.2	0,4009	-7.9	17.5	0,2838

Perez Valero, et al. CROI 2018, Abstract 425

<u>ALTAIR</u>: Neurocognitive and Neuroimaging Responses Differed Between 3 Regimens

- 30 HIV+ ART-naive adults randomized to 1 of 3 regimens for 48 weeks
- ABC-ZDV-TDF-FTC: greater improvement in reaction time and executive function
- **<u>EFV-TDF-FTC</u>**: greater NAA/Cr increase

Winston, et al. Clinical Infectious Diseases 2010; 50: 920–929 Winston et al, HIV Medicine 2012, 13: 245–251

ART Intensification May Benefit HAND

Table 3: Cognitive and biologic markers evolution according CPE ≥9 or not

Median [IQR]	Evolution at W96/D0 with CPE ≥9 (n=22)	Evolution at W96/D0 with CPE <9 (n=9)	р
ΔGDS	-0,4 [-0,8;-0,1]	0 [-0,2;+0,2]	0,018
Δ BDI II score	-5 [-11;-1]	1 [-1;+5]	0,029
Δ CCQ score	-1,5 [-4;0]	-2 [-2;-1]	1,0
∆ Altered domain	-1 [-3;0]	0 [-1;+1]	0,025
Δ Neopterin (PI ; CSF)	0 [-2;+2]; -0,3 [-2;0,8]	1,3 [-1;5]; -0,4 [-1;0,3]	0,18; 0,86
Δ sCD14 (PI ; CSF)	510[250;763]; -9[-35;1]	430[313;628];-4[-28;0]	0,64; 0,70
Δ MCP-1 (PI ; CSF)	-18[-48;21]; -39[-50;38]	41 [-6;146]; 9[-75;84]	0,06; 0,78
Δ IP-10 (PI ; CSF)	-28[-105;1];-78[-122;56]	57[7;211];-7[-131;280]	0,028; 0,31
ΔNFL (PI; CSF)	2,6 [1;6] ; 50 [-84;137]	2,9 [1-6]; 112 [54;311]	0,60; 0,27

Graph adapted from poster

Force, et al. CROI 2018, Abstract 415

Cross-Sectional or Cumulative CPE Not Associated with HAND

		Unadjusted			Adjusted ^a	
CPE scores ANI, MND, HAD, Other						
Cross-sectional analysis	(at the time o	f neurocognitive a	assessmen	t)		
N		909			900	
	OR	95% CI	P	OR	95% CI	Р
Continuous	1.03	0.96 - 1.11	0.408	1.04	0.94 - 1.14	0.441
≥7	1.13	0.81 - 1.57	0.476	1.22	0.81 - 1.83	0.347
≤ 5	0.89	0.45 - 1.75	0.735	0.82	0.35 - 1.92	0.646
6 – 8 (Ref.)	R	0.77 - 1.45	0.713	R	0.80 - 1.69	0.433
≥9	1.06			1.16		
Cumulative analysis (enti	re cART dura	tion) ^b				
N		909			900	
	OR	95% CI	P	OR	95% CI	P
Continuous / T	1.04	0.95 - 1.14	0.360	1.02	0.89 - 1.16	0.812
≥7/T(%)	1.02	0.98 - 1.06	0.347	1.03	0.97 - 1.10	0.323
≤ 5 / T (%)	0.98	0.93 - 1.04	0.494	0.99	0.90 - 1.10	0.885
≥9/T(%)	1.01	0.96 - 1.06	0.649	1.00	0.94 - 1.07	0.959

Darling, et al. CROI 2018, Abstract 416

Animal Models Also Support Higher ART Concentrations in Brain Tissue

Increasing Polypharmacy in Aging HIV+ Adults

Smit, Lancet Inf Dis 2015, 15(7):810-8

Women with HIV are More Likely to Use Other Medications Associated with NC-AEs

	No. Observations (%)	Odds Ratio	OR (95%CI)	p-value
Amphetamines	78 (0.6)	-	0.8 (0.3, 2.2)	0.66
Antianxiety	3706 (29.8)	-8-	1.4 (1.2, 1.7)	0.0004
Anticholinergics	676 (5.4)		1.2 (0.9, 1.7)	0.29
Anticonvulsant	1274 (10.3)	-	1 (0.7, 1.2)	0.74
Antidepressants	6231 (50.2)	-8-	1.6 (1.4, 1.8)	<.0001
Antihistamines	2053 (16.5)		1.4 (1.2, 1.7)	0.0004
Antipsychotics	2074 (16.7)	-	0.9 (0.8, 1.1)	0.52
Beta-blockers	1004 (8.1)		1.3 (0.9, 1.9)	0.17
Gastrointestinal	807 (6.5)		1.8 (1.3, 2.5)	0.0009
Muscle Relaxants	718 (5.8)		0.9 (0.7, 1.2)	0.35
Opioids	3420 (27.5)		1.4 (1.1, 1.6)	0.0003
n>0.05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.5 1.0 1.5 2.0 likely HIV+ more lik	2.5 elv	

	NC-AE Observations n / N (%)	Odds Ratio	OR (95%CI)	p-value
HIV+	12422/29800 (41.7)		1.5 (1.4, 1.7)	<.0001
Third-Party Health Payer	14332/35435 (40.4)		1.5 (1.4, 1.7)	<.0001
Annual Income >\$12,000	5902/18977 (31.1)		0.8 (0.8, 0.9)	<.0001
Homeless	525/950 (55.3)		1.1 (1, 1.3)	0.062
Completed High School	10168/26881 (37.8)		0.9 (0.8, 1.1)	0.25
Depressive Symptoms	6825/12835 (53.2)	-	1.3 (1.2, 1.3)	<.0001
Injection RDU	324/601 (53.9)		1 (0.8, 1.3)	0.91
Non-injection RDU	4082/8573 (47.6)		1.1 (1, 1.2)	0.0036
Abstain	8607/21482 (40.1)		Reference	NA
0-7 drinks/wk	4664/13288 (35.1)		0.9 (0.9, 1)	0.0015
7-12 drinks/wk	589/1601 (36.8)		0.9 (0.8, 1)	0.034
>12 drinks/wk	1138/2738 (41.6)		1 (0.9, 1.1)	0.37
Clinical AIDS	6269/11956 (52.4)		1.7 (1.5, 2)	< 0001
	0.5	10 15	2.0	-
■ p>0.05	NC-AE use less I	kely NC-AE use mo	re likely	
p<0.05, NC-AE more likely	n/N : number of NC-AE med	use visits/total predictor v	isits	
p<0.05, NC-AE less likely	OR: odds ratio, adjusted for RDU: recreational drug use	HIV+ status except for "HI	V+" and "Clinical All	DS"

RT	NC-AE Drug Use and ART		
p-value	tcome OR (95% CI)		
<0.0001	46 (1.35-1.5	T use	
0.45)3 (0.95-1.12	T adherence	
0.0008	12 (1.05-1.19	lectable viral load	
)3 (0.95-1.12 12 (1.05-1.19	T adherence lectable viral load	

Radtke, et al. CROI 2018, Abstract 401

Benefits of Low Dose Hydrocortisone in Women with HIV

***p<0.001; **p<0.01; *p<0.05. T=0.06. WM=working memory. Analyses controlled for order of cognitive tests.

Rubin, et al. CROI 2018, Abstract 420

By looking at differences in how these drugs affect different groups, we can determine *relative differences* in baseline cholinergic function

Newhouse et al. (2001), Sunderland, Tariot, & Newhouse, (1988)

HAND Diagnosis-Related

- Novel Multivariate Method
- Depression
- Pathogenesis
 - Host (Aging)
 - -HIV
- Treatment

Acknowledgements & Conflicts Study Volunteers

Barcelona

Martinez

Blanch

Jose Muñoz Moreno

Ana Curiel

Ruth Boza-Planas

- Igor Grant
- J. Allen McCutchan
- **Bob Heaton**
- Ronald J. Ellis
- **David Moore**
- Tom Marcotte
- Cris Achim
- Eliezer Masliah

- **Brookie Best**
- Edmund Capparelli
- Davey Smith
- Mariana Cherner
- Debra Rosario
- **Ben Gouaux**
- Jennifer Marquie
- **Donald Franklin**

- **David Clifford**
- Justin McArthur
- Ann Collier
- Christina Marra
- Susan Morgello
- **Ned Sacktor**
- David Simpson
- Ben Gelman