

Prevention of Neurocognitive impairment

Paola Cinque San Raffaele Scientific Institute Milano, Italy

11° International Symposium on Neuropsychiatry and HIV

May 18-19, 2018 Barcelona, Spain

Potential causes/risk factors of cognitive decline in persons living with HIV

- 1. Direct HIV damage in CNS (HIV-associated NCI)
- 2. Previously established irreversible tissue damage by HIV or other causes (legacy effect)
- 3. Aging
- 4. Psychiatric disorders
- 5. Drugs, alcool abuse
- 6. Metabolic problems
- 7. Cerebro-vascular disease
- 8. Alzheimer's and other neurodegenerative diseases
- 9. Drug toxicity (ART, other drugs)?

Potential causes/risk factors of cognitive decline in persons living with HIV

- 1. Direct HIV damage in CNS (HIV-associated NCI)
- 2. Drugs, alcool abuse
- 3. Drug toxicity (ART, other drugs)?
- 4. Metabolic problems
- 5. Cerebro-vascular disease
- 6. Psychiatric disorders

PARTIALLY PREVENTABLE

PREVENTABLE

- 7. Alzheimer's and other neurodegenerative diseases
- 8. Previously established irreversible tissue damage by HIV or other causes (legacy effect) **PREVENTABLE**
- 9. Aging

Potential causes/risk factors of cognitive decline in persons living with HIV

1.	Direct HIV damage in CNS (HIV-associated NCI)			
2.	Drugs, alcool	PREVENTABLE		
3.	Drug toxicity (ART, other drugs)?			
4.	Metabolic problems			
5.	Cerebro-vascular disease	ΡΑΚΠΑLLΥ PREVENTABLE		
6.	Psychiatric disorders			
7.	Alzheimer's and other neurodegenera	tive diseases		
8.	Previously established irreversible tissue damage by HIV or other causes (legacy effect)			
g	Aging			

Prevention of HIV replication and damage in CNS (HIV-associated NCI)

All cART regimens control HIV-associated NCI by suppressing HIV replication in the CNS (consequently to VL control in blood)

VS.

'Neuro-active' ART (with enhanced CNS penetration/efficacy) is needed to suppress HIV replication in the CNS

NCI and ART neuropenetration

	Cysique	Tozzi	Smurzynski	Marra	Winston	Arendt	Garvey	Rourke	Ciccarelli	Robertson	Kahouadji	Ellis
Study	UCSD CIT	INMI	ALLRT	ACTG 736	ALTAIR	Dusseldorf NA Cohort	Imperial College, UK	OHTN Cohort Study	UCSC	ACTG 5199	INSERM	HNRP/UCS D
Sample Size	37	185	2,636	26	30	3,883	101	545	101	860	54	49
CPE: CSF VL	Lower VL	No CSF	No CSF	Lower VL	No CSF	Lower VL	No CSF	No CSF	No CSF	No CSF	No CSF	No effect
Number of NP Tests	6	15	3	4	CogState	2	2	4	18	6	4	14
CPE: NP Tests	Better	Better	Better (only by >3 drugs)	Poorer	Poorer	Better	No effects	Not conclusive	Better	No effect	Poorer	No effect
Prospectiv e	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes
Controlled	No	No	No	No	Yes	No	No	No	No	Yes	No	Yes
Norms for NP Change	Yes	No	No	No	No	No	No	No	Yes	No	No	No

Cysique et al, Neurology 2009, 73(5):342-8; Tozzi et al, J Acquir Immune Defic Syndr 2009;52:56–63; Smurzynski et al, AIDS 2011;25:357-365; Marra et al, AIDS 2009, 23(11):1359-66; Winston A, et al. Clin Infect Dis 2010;50:920-929; Arendt, et al. 18th CROI, Boston (MA, 2011. Poster #425; Garvey et al. HIV Clin Trials, 2011;12(6):333-338; Rourke SB, et al. 6th IAS Conference on HIV Pathogenesis, Teatment and Prevention, Rome, 2011; Ciccarelli N, et al. Antiviral Ther, 2013; Roberston et al. Clin Infect Dis 2012;55(6):868–76; Kahouadji Y, et al. HIV Medicine 2012;14:311-315; Ellis et al. 20th CROI, Atlanta (GA), 2013; Abst#20.

(Courtesy of S. Letendre, 201

Randomized Clinical Trial of Antiretroviral Therapy for Prevention of HAND in naïve pts (Bejing, China)

NVP+AZT+3TC vs. EFV+TDF+3TC

- 1036 pts, no NCI
- 97-100% M, median CD4 235-222/µL, median logVL 4.2 c/mL
- 8 test battery

Scott Letendre et al., CROI 20

CSF viral escape

- On ART > 6/9 months
- CSF VL > LLD (if plasma VL suppressed) or CSF VL > plasma VL (if plasma VL >50)
- Symptomatic or asymtomatic

Neuro-symptomatic CSF viral escape (meningoencephalitis)

- M, 26
- 2010: Headache, disarthria, ataxia (days)
- History of systemic OIs
- CD4 nadir: 9
- 2009: Starts ART (AZT,3TC,LPV/r)
- Change to TDF,FTC,ATV
- CD4 290
- Plasma HIV 98 c/mL
- CSF HIV 5200 c/mL
- CSF cells: 200/µL

No CSF mutations to NRTIs and PIs

Peluso M et al. AIDS 2012

Neuro-symptomatic CSF viral escape (meningoencephalitis)

- M, 26
- 2010: Headache, disarthria, ataxia (days)
- History of systemic OIs
- CD4 nadir: 9
- 2009: Starts ART (AZT,3TC,LPV/r)
- Change to TDF,FTC,ATV
- CD4 290
- Plasma HIV 98 c/mL
- CSF HIV 5200 c/mL
- CSF cells: 200/µL

No CSF mutations to NRTIs and PIs

→ Resolution by cART optimization for neuropenetration (AZT, 3TC, DRV/r bid)

Peluso M et al. AIDS 2012

CD4 cells and VL values in patients with neuro-symptomatic CSF escape

Variable	Median (IQR)	Range	
Blood CD4 (cells/µL)	520 (308-592)	107-660	
Nadir blood CD4 (cells/µL)	55 (12-145)	2-250	
CSF WBC (cells/µL) ^a	22 (10-55)	0-200	
Plasma HIV (log10 copies/mL)	1.69 (1.69-2.68)	1.69-2.68	
CSF HIV (log10 copies/mL)	3.01 (2.76-3.72)	2.13-4.11	
CSF:plasma difference (log10 copies/mL)	1.25 (1.06-1.44)	0.44-2.23	

Possible risk factors for symptomatic CSF escape

- Presence and size of brain 'reservoir' (low nadir CD4 cells, previous HIV-E, previous CSFescape)
- ARV drug resistance
- Inadequate ART adherence
- Inadequate efficacy of individual drugs/regimens
 - CNS 'penetration'
 - Efficacy in macrophages/microglial cells

Prevention of CSF escape

- Presence and size of brain 'reservoir' (low nadir CD4 cells, previous HIV-E, previous CSF-escape)
- ARV drug resistance
- Inadequate ART adherence
- Inadequate efficacy of individual drugs/regimens
 - CNS 'penetration'
 - Efficacy in macrophages/microglial cells

In persons at risk:

 \rightarrow Clinical monitoring for CSF escape

→ART with enhanced CNS penetration/efficacy?

Cerebral small vessel disease (CSVD) in HIV-infected cART-controlled patients

ANRS EP51 MICROBREAK (NCT02082574) cross-sectional study (June 2013 - May 2016)

- CSVD prevalence by MRI in treated HIV, >50 years with controlled VL for >12 months vs. HIV negative controls
- 456 HIV+ and 154 HIV-neg
- CSVD prevalence:

 → HIV-pos: 51.5%
 → HIV-neg: 36.4%
 OR 2.3 (95% CI: 1.5–3.6)

- Independent predictors of risk in HIV+:
 - Older age
 - Hypertension
 - Lower CD4 nadir

Mouligner A et al., Clinical Infectious Diseases[®] 2018;66(11):1762–9

Cardiovascular and cerebrovascular disease: Potential mechanisms of heightened atherogenesis in HIV

Association of Macrophage Inflammation Biomarkers with Progression of Subclinical Carotid Artery atherosclerosis in HIV-infected patients

Hanna DB et al., The Journal of Infectious Diseases 2017;215:1352-

Epidemiology of cerebrovascular disease in a post-cART era

Data from the Nationwide Inpatient Sample from 1995 to 2010.

Patients with ischemic stroke and AIDS identified using ICD-9 codes.

1,874,067 hospitalizations for ischemic stroke over 16 years

Kucab et al. Journal of Stroke and Cerebrovascular Diseases, Vol. 26, No. 6 (June), 2017: pp 1197–1203

Greater Risk of Stroke of Undetermined Etiology in a Contemporary HIV Cohort Compared to non-HIV

	HIV-infected individuals, n = 60 No. (%)*	HIV-uninfected individuals, n = 60 No. (%)*
Ischemic stroke subtype		
Large artery	14 (23)	13 (22)
Small vessel	12 (20)	20 (33)
Cardioembolic	12 (20)	24 (40)
Undetermined etiology	14 (23)	2 (3)
Other etiology	8 (13)	1 (2)

Chow et al. Journal of Stroke and Cerebrovascular Diseases, Vol. 26, No. 5 (May), 2017: pp 1154–1160

Stroke risk factors that are not within your control

- Age
- Sex
- Race
- Family history
- Prior stroke, TIA or heart attack

Understanding stroke risk, American Hearth Association

http://www.strokeassociation.org/STROKEORG/AboutStroke/Underst...dingRisk/Understanding-Stroke-Risk_UCM_308539_SubHomePage.jsp

Stroke risk factors that you can control, treat and improve

- High blood pressure
- Smoke
- Diabetes
- Diet
- Physcal activity
- Obesity

- High blood cholesterol
- Carotid artery disease
- Peripheral artery disease
- Atrial fobrillation
- Other hearth disease
- Sickle cell disease

Understanding stroke risk, American Hearth Association

http://www.strokeassociation.org/STROKEORG/AboutStroke/Underst...dingRisk/Understanding-Stroke-Risk_UCM_308539_SubHomePage.jsp

Additional factors that may be linked to higher stroke risk

- Geographic location
- Socio-economic factors
- Alcohol abuse
- Drug abuse
- Sleep habits

Understanding stroke risk, American Hearth Association

http://www.strokeassociation.org/STROKEORG/AboutStroke/Underst...dingRisk/Understanding-Stroke-Risk_UCM_308539_SubHomePage.jsp

Conclusions

Prevention is an important component towards control of neurocognitive impairment in HIV-infected persons