HOW TO ASSESS NEUROTOXICITY?

Andrea Calcagno

University of Torino, Italy

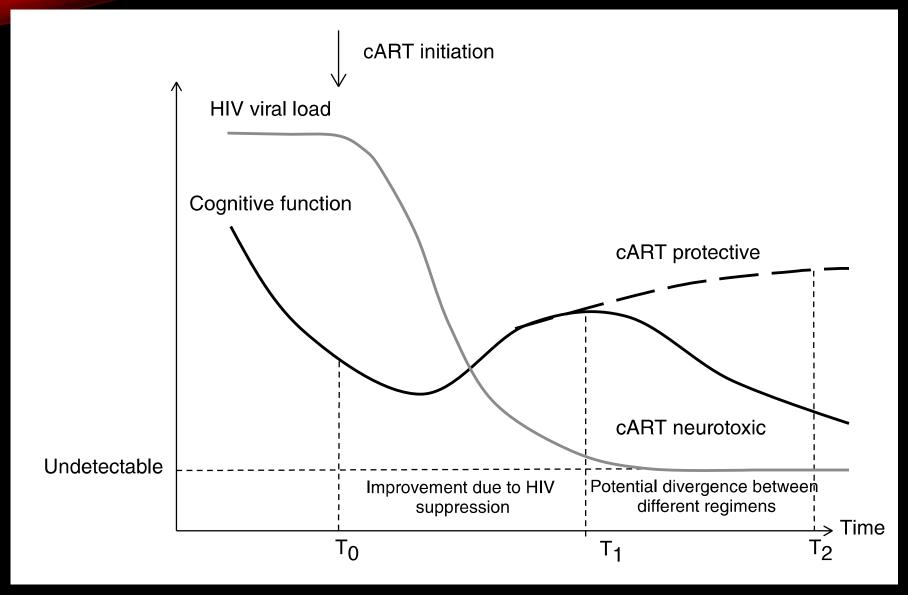
DISCLOSURES

I have read and understood ICMJE policy on declaration of interest and I declare that I have no conflicting interest

In the past five years I received:

- research grants from Gilead, Viiv and BMS;
- speaker's honoraria from Abbvie, BMS, Gilead, Janssen-Cilag, MSD, Viiv.

EDITORIAL REVIEW


Could antiretroviral neurotoxicity play a role in the pathogenesis of cognitive impairment in treated HIV disease?

Jonathan Underwood^a, Kevin R. Robertson^b and Alan Winston^a

Whilst effective antiretroviral therapy is protective against the more severe forms of HIV-associated brain disease, there remains a large burden of clinically symptomatic cognitive impairment in the modern era. Although several potential pathogenic mechanisms have been proposed, the underlying pathology remains elusive. In this review, we summarize the evidence describing neuronal toxicity of antiretroviral agents themselves in both preclinical and clinical situations, as well as the potential pathological mechanisms underlying this toxicity. We also consider the implications for future practice and clinical research in which case determining optimal antiretroviral combinations that effectively suppress HIV replication whilst minimizing neurotoxic effects on the central nervous system may become paramount.

Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

NEUROTOXICITY – A POTENTIAL MODEL

THE EFAVIRENZ PARADIGM

• It took approximately 15 years to recognize efavirenz in vivo (despite earlier evidence of in vitro neuronal toxicity)

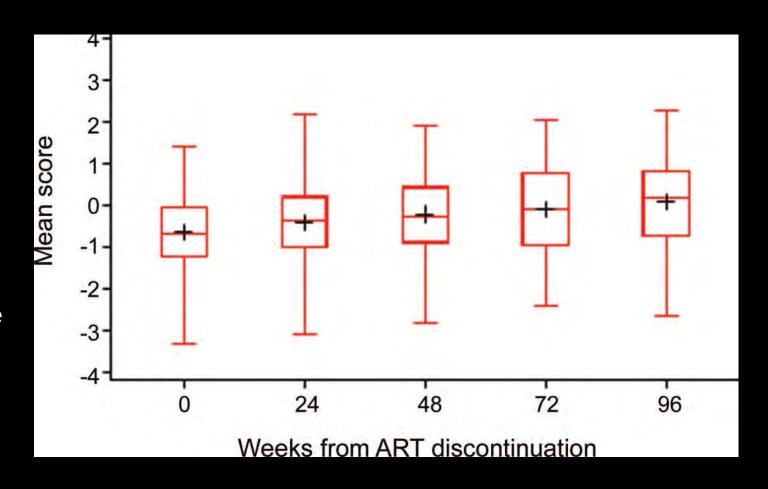
Detrimental effect on neurocognition

Full neurocognitive tests

Spectroscopic MRI

Association with suicidal ideation

Questionnaires - PROs

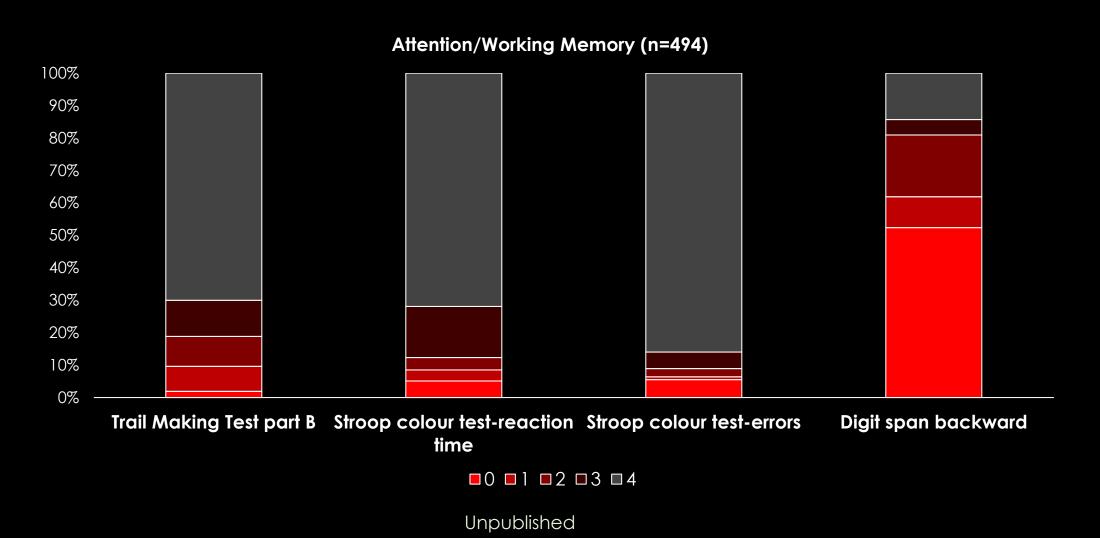

MECHANISMS OF ANTIRETROVIRALS' CNS TOXICITY

- 1 Direct Neuronal toxicity
 - In vitro
 - in macaques
- 2 Beta amyloid metabolism interference
- Astrocytes and blood brain barrier
- 4 Olygodendrocytes and myelin
- (5) Indirect effect on cerebral blood vessels
- 6 Efavirenz (and 8-08-EFV)
- (7) Impairment in mitochondrial function
- (8) Interference with neurotransmitters

1. FULL NEUROCOGNITIVE TESTS

NP IMPROVEMENT IN TREATMENT DISCONTINUATION

- 167 pts with CD4>350, HIV RNA <55000 copies/mL
- Elected to discontinue HAART
- Trail Making (A/B) and Digit Symbol mostly
- Greater benefit in those stopping EFV



EFV AND SPECIFIC AREAS?

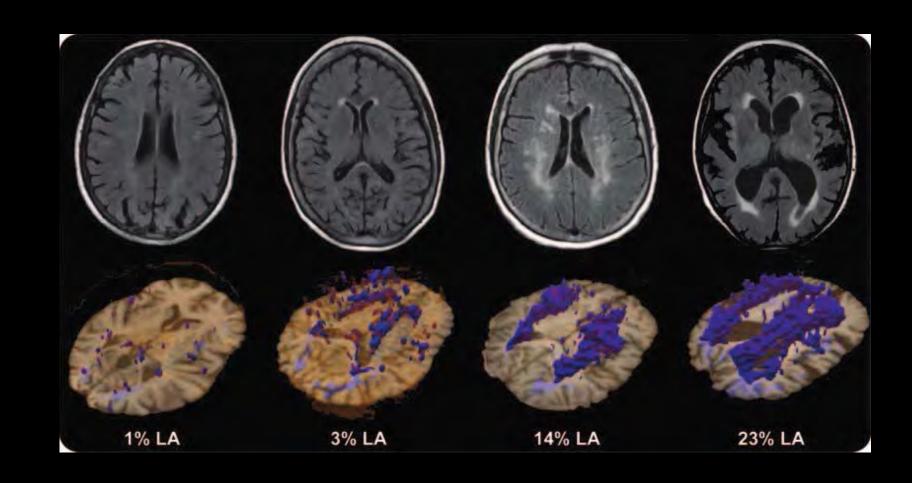
	Patients (n = 146)	Controls (n = 30)	pª
Mini-Mental State Examination	28.00 (1.88)	29.10 (0.88)	<0.001 ^b
Immediate recall of Rey's words	37.90 (8.56)	42.3 (8.01)	0.010
Delayed recall of Rey's words	7.66 (2.78)	8.77 (2.62)	0.046
Digit span (forward)	5.61 (1.05)	5.77 (1.19)	0.488
Digit span (backward)	4.19 (1.26)	4.47 (1.33)	0.283
Spatial span (forward)	4.77 (0.92)	5.43 (0.90)	<0.001 ^b
Spatial span (backward)	3.90 (1.00)	4.10 (1.18)	0.315
Spatial supraspan (% pathologic performance)	55/124 (44.4)	10/30 (33.3)	0.373
Constructional task (Rey's figure)	31.72 (3.91)	32.71 (2.64)	0.187
Delayed recall of Rey's figure	13.24 (6.07)	15.09 (5.35)	0.136
Stroop test (errors)	1.25 (1.86)	0.60 (0.87)	0.004
Stroop test (time)	19.19 (10.01)	21.65 (12.37)	0.242
Trail-Making Test B (time)	147.30 (62.28)	130.14 (48.39)	0.170
Trail-Making Test B (errors)	0.88 (1.13)	0.78 (0.92)	0.669
Drawings	4.71 (1.80)	5.17 (1.44)	0.191
Raven's matrices	29.11 (4.89)	30.78 (3.97)	0.083
Letter fluency	33.84 (12.23)	37.47 (11.47)	0.138
Wais Digit Symbol	8.62 (2.44)	9.57 (2.58)	0.057
Double barrage	0.95 (0.095)	0.98 (0.018)	0.087
Number of tasks with score below the cutoff	2.84 (2.60)	1.40 (0.97)	<0.001 ^b

Ciccarelli N, et al. Neurology 2011

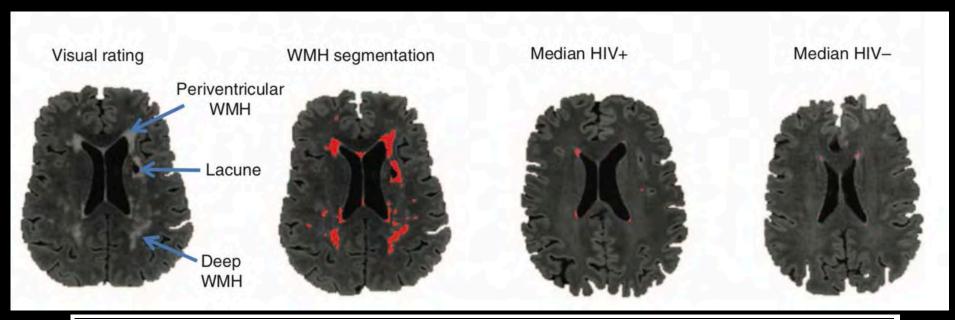
SPECIFIC TESTS?

2. MRI, MRS AND FMRI

MECHANISMS OF ANTIRETROVIRALS' CNS

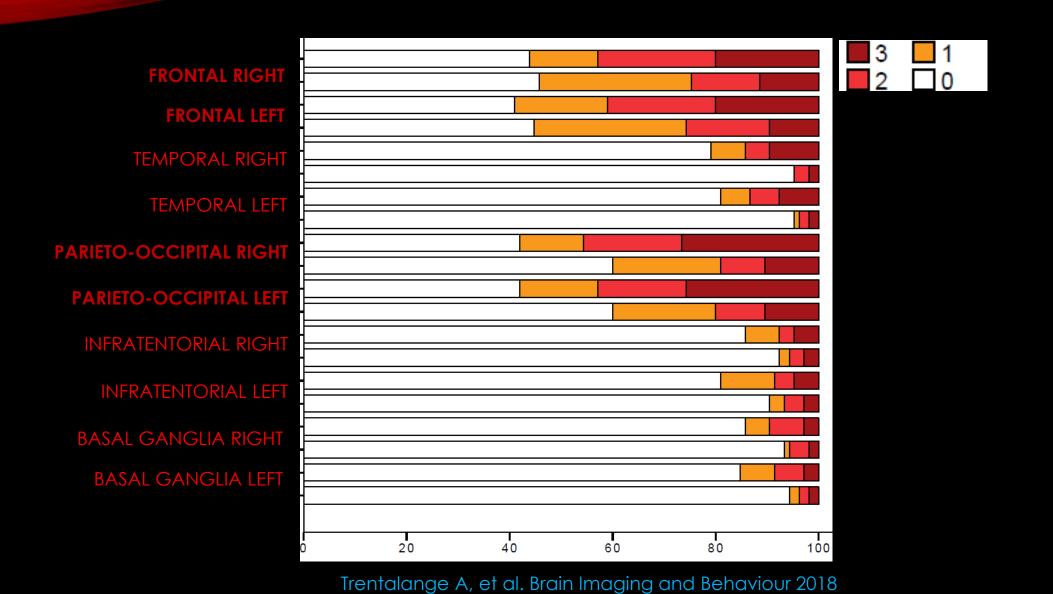

- 1 Direct Neuronal toxicity
 - In vitro
 - in macaques
- 2 Beta amyloid metabolism interference
- Astrocytes and blood brain barrier
- 4 Olygodendrocytes and myelin
- (5) Indirect effect on cerebral blood vessels
- 6 Efavirenz (and 8-08-EFV)
- (7) Impairment in mitochondrial function
- (8) Interference with neurotransmitters

MRS

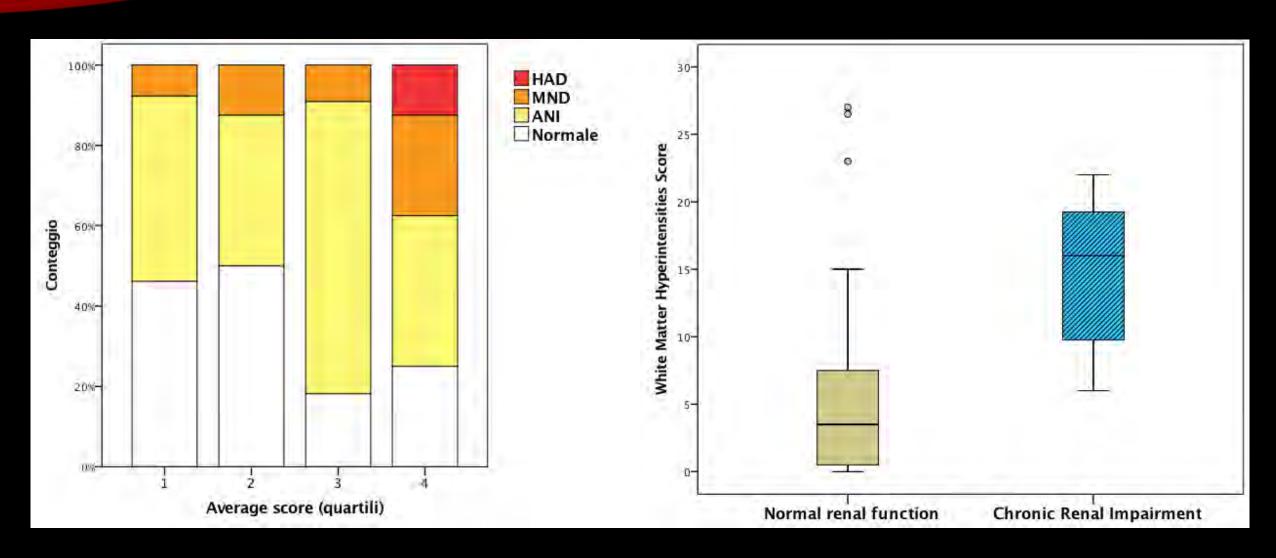

MRI, fMRI

WHITE MATTER HYPERINTENSITIES HIV-

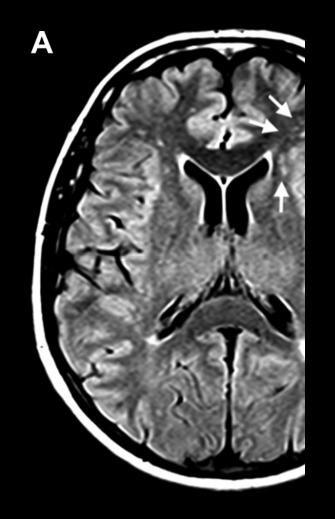
Heterogeneous abnormalities in White Matter as lacunar infarcts, micro-bleeding, alterations in perivascular spaces and linked to small vessel cerebral disease

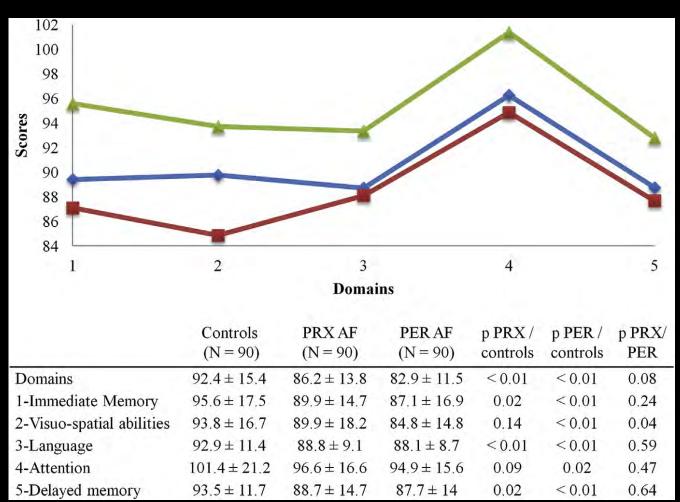


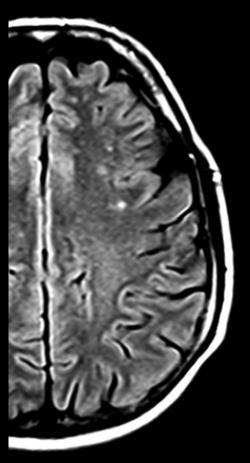
WHITE MATTER HYPERINTENSITIES PLWH

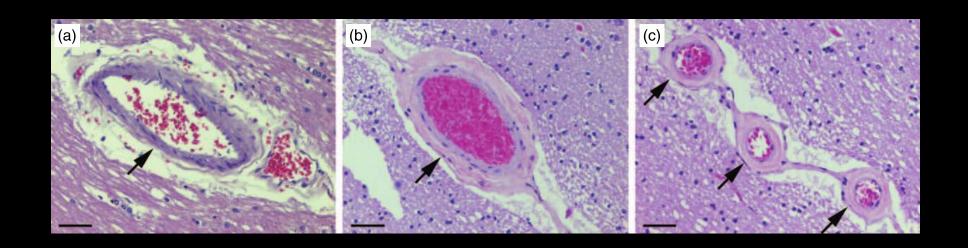


				Outcome measure: cog	nitive 1	function	a		
	Model 1			Model 2*			Model 3 [#]	;	
	ß (95% CI)	Р	η^2	ß (95% CI)	Р	η^2	ß (95% CI)	Р	η^2
HIV serostatus (0/1) ^b	-0.29 (-0.550.03)	0.03	0.03	-0.29 (-0.550.04)	0.03	0.03	-0.23 (-0.49-0.02)	0.07	0.02
Diabetes mellitus (0/1) ^c	_	_	_	-0.60 (-1.170.03)	0.04	0.02	-0.56 (-1.13 - 0.01)	0.05	0.02
Age (years)	-	_	_	-0.011 (-0.028 - 0.006)	0.20	0.01	0.00 (-0.020 - 0.020)	0.99	0.0001
D-dimer (mg/l)	_	_	_	-0.43 (-1.04 - 0.19)	0.17	0.01	-0.28 (-0.90 - 0.34)	0.37	0.005
DBP (mmHg)	_	_	_	0.004 (-0.010 - 0.017)	0.60	0.002	0.006 (-0.007 - 0.020)	0.35	0.005
Total WMH load ^d	_	-	-	<u> </u>	_	_	-0.33 (-0.640.02)	0.04	0.03

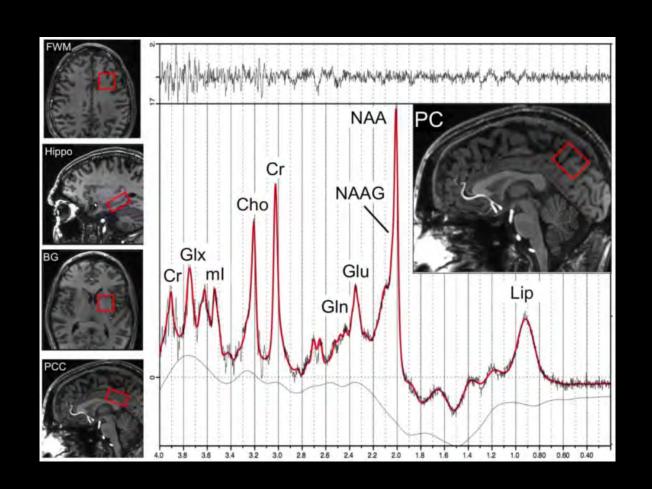

WMH (VISUAL SCALE) IN TORINO (N=107)




WMH IN TORINO


WMH AND ATRIAL FIBRILLATION

CEREBRAL SMALL VESSEL DISEASE


(137 autopsies, 1999-2011)

Mild CSVD 24.8% - moderate/severe CSVD 47.4%

- associated with PI-based HAARTs and diabetes
- HAND associated with mild CSVD

N-ACETYL ASPARTATE AT MRS

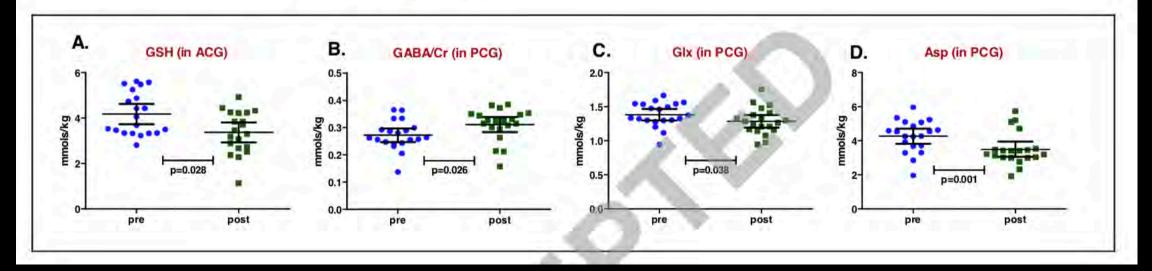
- Localize to neurons (axons)
- Marker of neuronal integrity
- Marker of mitochondrial integrity
 - Reduced following ATP inhibition and impaired oxygen consumption
- Reduced Naa with "old" drugs and in patients with NCI

ALTAIR – WEEK 144

- 22 neuroasymptomatic naïve patients
- MRS and NCT at BL, and week 48 and 144
- Improvement at week 48 but decline between 48 and 144 week
- Reductions in NAA/Cr ratio (week 48–144) in RBG were associated with an increase in composite speed score change (week 48–144)

	Details	Mean	absolute cha	nge		Mean absolute change		
		number	week 0-48	SD	P-value	week 48-144	SD	P-value
Cerebral Metabolite Ratio								
Anatomical area	Ratio							
Frontal Grey	NAA/Cr	22	0.31	0.66	0.36	0.13	0.91	1.00
	Cho/Cr	22	0.02	0.19	1.00	0.09	0.28	1.00
	ml/Cr	21	- 0.27	1.35	1.00	1.13	1.71	0.06
Frontal White	NAA/Cr	22	0.04	0.74	1.00	0.14	0.77	1.00
	Cho/Cr	22	-0.08	0.30	1.00	0.14	0.24	0.09
	ml/Cr	21	-0.50	1.54	1.00	1.49	1.49	0.002
Right Basal Ganglia	NAA/Cr	20	0.64	1.20	0.27	-0.61	1.13	0.27
	Cho/Cr	20	-0.09	0.76	1.00	-0.17	0.33	0.27
	ml/Cr	20	-0.03	1.05	1.00	0.71	1.46	0.36
Cognitive test parameter								
Composite speed score	decline in score represents improvement	21	-0.186	0.486	0.10	-0.027	0.452	0.79
Composite accuracy score	increase in score represents improvement	21	0.220	0.497	0.06	-0.305	0.499	0.01
Executive function score	decline in score represents improvement	21	-0.222	0.858	0.25	0.351	1.20	0.19
Global composite score	increase in score represents improvement	21	0.627	1.16	0.02	-0.629	1.41	0.06

SWITCH EFV TO INSTI


20 ASYMPTOMATIC PTS ON EFV SWITCHED TO RAL OR EVG

Decription	Decription of non-opsychological mensures	id name a		Kesa qasyahalagical ahasyas with EFV suicida	cal changes with	EFV seitch		
		Dog.	SzaleRange	Pre-Switch (91)			€ -⊳	idapéaia (Taical
WAISR- DSSI	Westlier Adult Intelligence Scale	Cognitive test to assess executive function	0-100 Lower some = more cognitive dysfunction	4.7(1L s)	357	4.7 5	会	Improved caeculive function
	Trail Making test Parts A and B	Tests speed of information processing, attention and task switch to detect cognitive	Time (log transformed, sec) Slower speed = greater	330		0.036	0.19	Pat A: faster information processing
2		in pain est	cognitive impainment	452	4.67	0.146	0.31	Pat B: unchanged executive function
HAWD	Hamilton Rating Scale for Depression	Standard clinical measure of seventy of depression	0.7 is normal >20 = n oderate / the depreysion	51 (2.6)	2.8 (2.6)	-230		less depressive symptoms
	Depression	Self-expected symptoms over	5		Depression			less reported
	Aminty Stress	the past week for depression,	H (ST	7.0 (0.0)	3.4 (4.2)	-3.60	0.074	depression.
E					Anxiety			less self-reported
UA 332				43 (53)	25 (2.2)	150	0.067	anciety
					Shess:			less self-reported
				69 (4.6)	4.4 (4.2)	-2.50	톮	stresslevel
F.92	Fruntal Systems Behavioral Scale	Self apparted assessment of 3 frontal system: apathy, distribution and a central dysfunction	37.186 ghe some = greder charined in parament	7\$.4 (11.4)	71.4 (11.3)	7.00	툦	less self-reported behavioral symptoms
MIS	Spidbaga state trait arriety inventory	Assess specifical of grander and severity of an ory	20.40 Higher sourc=more armiety	29.1 (5.5)	15.7 (T.J)	-3.40		decreased amiety
PSG	Pitsburgh Sleep Quality Indea	Subjective sleep quality to assess duration, sleep efficiency and disturbances	0.21 Higher some = greder sleep disturbances	51 (2.6)	35(1 .5)	-1.60	会	improved steep quality

SWITCH EFV TO INSTI

20 ASYMPTOMATIC PTS ON EFV SWITCHED TO RAL OR EVG

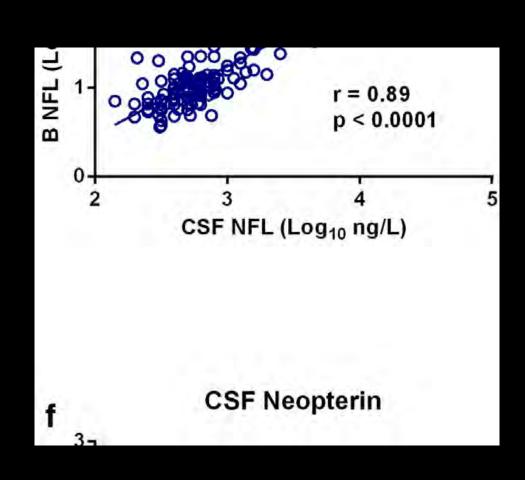
Figure 1a: Comparison of pre- and post-EFV switch neurometabolite levels measured by MRS in the anterior cingulate gyrus (ACG) or the posterior cingulate gyrus (PCG). Statistical comparison done by two-tailed paired t-test. A) GSH = glutathione, B) GABA/Cr = gamma-aminobutyric acid creatine ratio, C) Glx = glutamate + glutamine, D) Asp = aspartate.

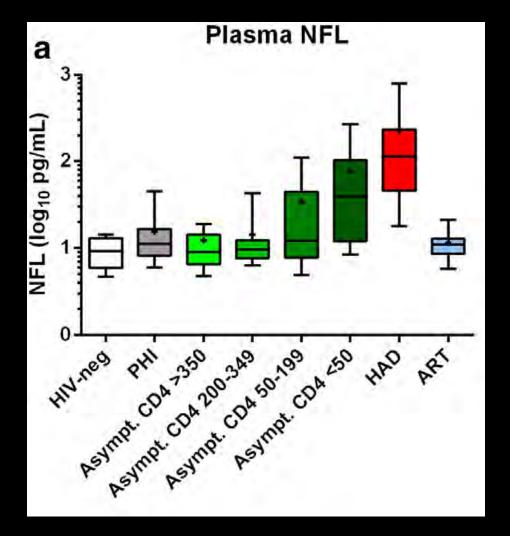
3. PLASMA AND CSF BIOMARKERS

MECHANISMS OF ANTIRETROVIRALS' CNS TOXICITY

- 1 Direct Neuronal toxicity
 - In vitro
 - in macaques
- 2 Beta amyloid metabolism interference
- 3 Astrocytes and blood brain barrier
- 4 Olygodendrocytes and myelin
- (5) Indirect effect on cerebral blood vessels
- 6 Efavirenz (and 8-08-EFV)
- 7 Impairment in mitochondrial function
- (8) Interference with neurotransmitters

Plasma and CSF NFL (t-tau?)

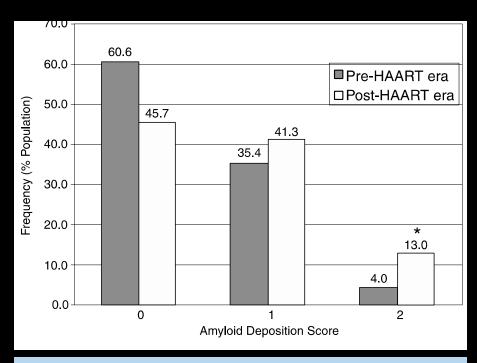

CSF Beta¹⁻⁴²


CSF \$100beta?

CSAR

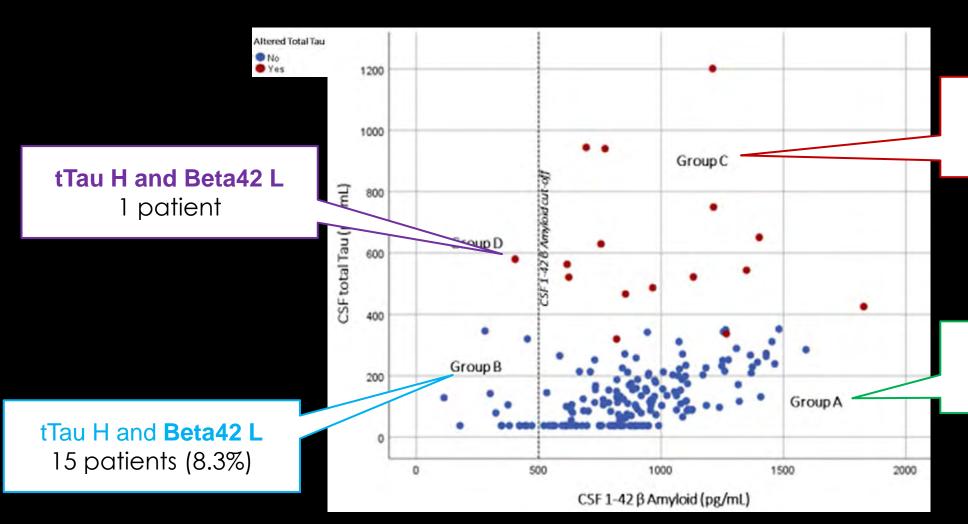
CSF mtDNA?

PLASMA NFL



CSF ALZHEIMER'S BIOMARKERS IN PLWH

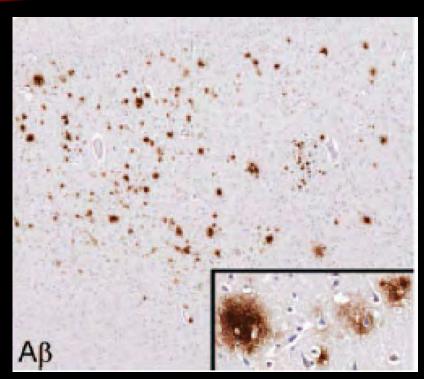
Different amyloid deposition
No premature amyloid increase
AD's patterns only in 12% of HAD patients
5 cases of possible AD in PLWH (3 biopsy/autopsy)


	HAD	AD
t-tau	++	+++
p-tau	=	++
p-tau AB42	-	-
sAPP□		=
sAPP□		=
NFL	+++	+

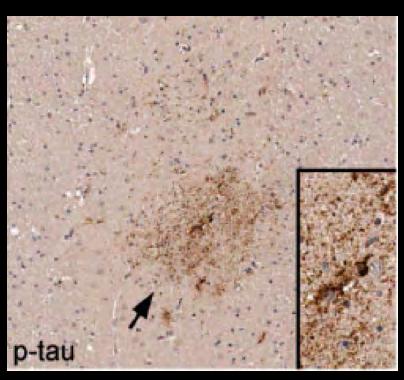
HAART and amyloid deposition

In patients with access to HAART, there is a clear trend towards decreasing prevalence of Grade 0, and an overall increase in Grades 1 and 2. ARVs increase Aß generation (50-200%) and markedly inhibit microglial phagocytosis of **A**ß1-42 peptides in murine microglia. The most significant amyloidogenic effects were observed with combined ART.

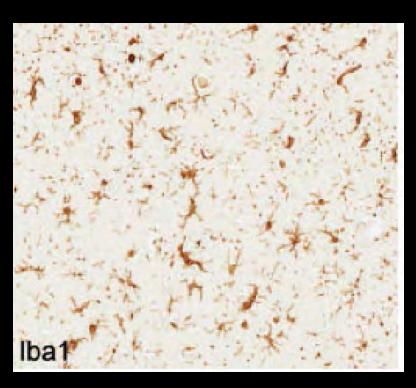
ALZHEIMER'S DEMENTIA BIOMARKERS IN 181



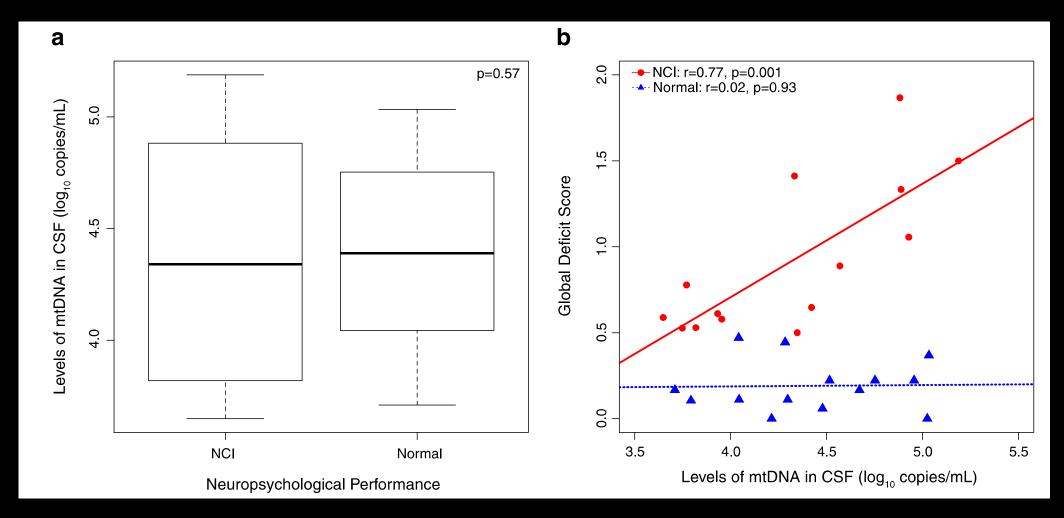
tTau H and Beta42 n 15 patients (8.3%)


tTau n and Beta42 n 150 patients (82.9%)

Trunfio M, et al. CROI 2019


AMYLOID AND PHOSPHO-TAU NEUROPATHOLOGY MAY BE INFLUENCED BY ANTIRETROVIRALS

Tenofovir use prior to death associated with <u>lower</u> odds of amyloid β plaque deposition (OR 0.13, p=0.012)



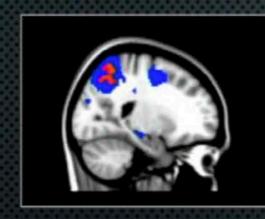
Darunavir use prior to death associated with higher odds of phopho-tau deposition in neurons (OR 15.3, p=0.0005)

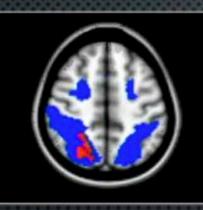
Ritonavir use prior to death associated with higher odds of microgliosis (OR 4.96, p=0.023)

CSF MITOCHONDRIAL DNA AND NCI

4. FMRI AND EEG?

MECHANISMS OF ANTIRETROVIRALS' CNS TOXICITY


- 1 Direct Neuronal toxicity
 - In vitro
 - in macaques
- 2 Beta amyloid metabolism interference
- Astrocytes and blood brain barrier
- 4 Olygodendrocytes and myelin
- (5) Indirect effect on cerebral blood vessels
- 6 Efavirenz (and 8-08-EFV)
- (7) Impairment in mitochondrial function
- (8) Interference with neurotransmitters


fMRI

fMRI? EEG?

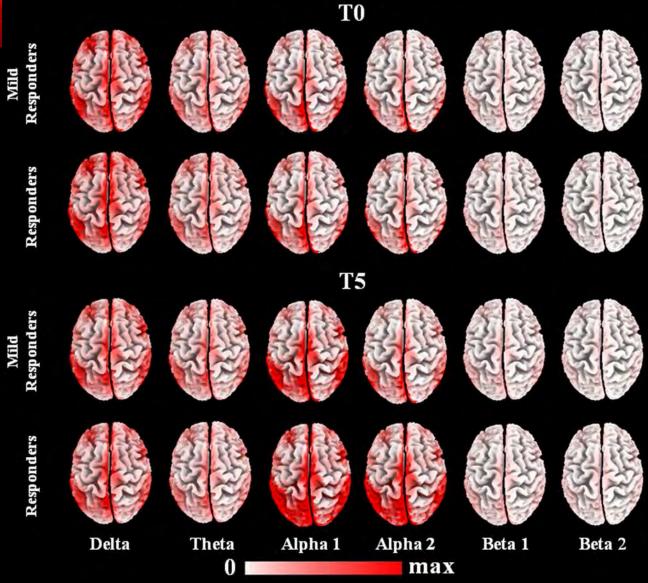
RESULTS: STUDY 2 SWITCHING EFAVIREZ TO RILPIVIRINE

Resting state fMRI: effect of switching efavirenz to rilpivirine on RSN

Switching efavirenz to rilpivirine increased FC in the Default Attention Network (spatial attention); (P=0.005)

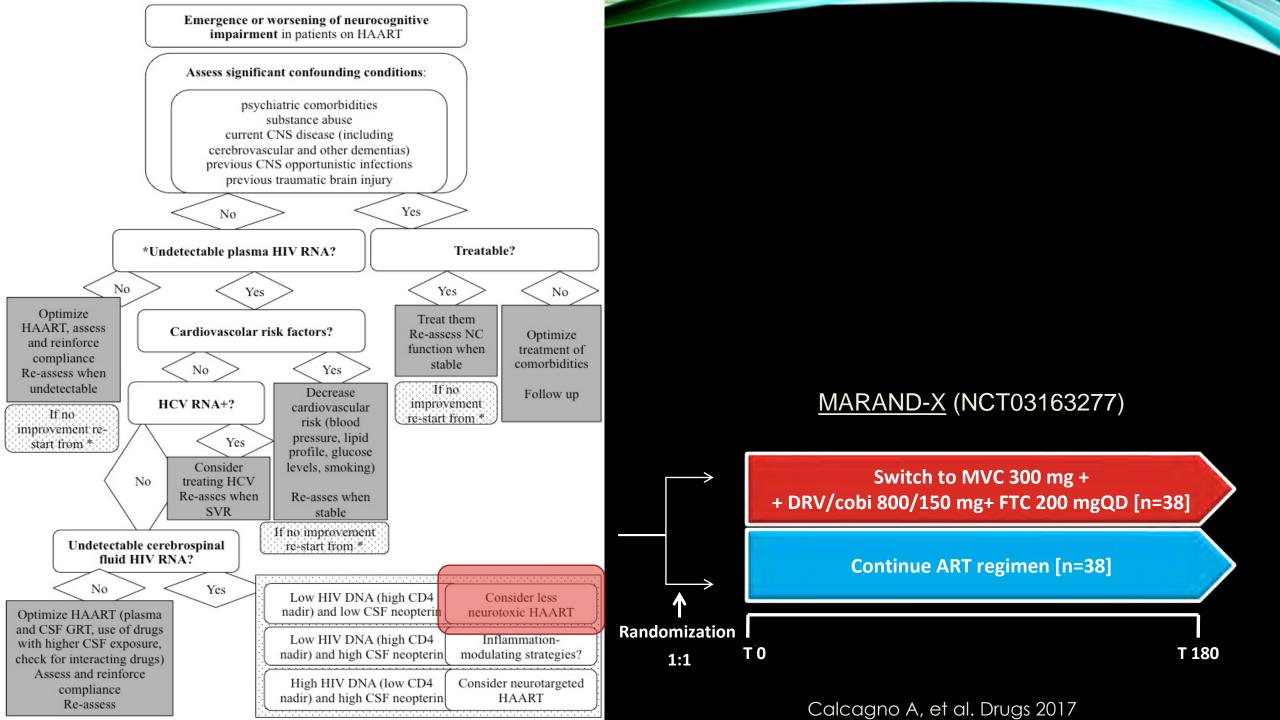
Increased FC in DAN network was associated with improvements in cognitive scores for attention (p=0.020, η^2 = 0.47)

SSRT task fMRI: effect of switching efavirenz to rilpivirine on inhibitory control (executive function)


A reduction in brain activation after switching (less effort)

A reduction in stop-signal reaction times was observed after switching efavirenz to rilpivirine (p=0.025)

Increase stop-signal reaction time was associated with longer exposure to efavirenz (p=0.020, η^2 = 0.875), median exposure 5.2 years


Vera J, et al. CROI 2019

GRAND AVERAGE OF LORETA CURRENT DENSITY

EEG LORETA

5. OUR FLOWCHART

ACKNOWLEDGEMENTS

Prof. G Di Perri Prof. S Bonora Laura Trentini Cristina Tettoni Roberto Bertucci Sabrina Audagnotto Letizia Marinaro Mattia Trunfio Alice Trentalange Veronica Pirriatore Giacomo Stroffolini Enrica Borgogno

Prof. P Cassoni Luca Bertero

Daniele Imperiale Cristiana Atzori Daniela Vai Marco Nigra Lorenzo Mighetto Valeria Ghisetti

Enrica Amasio Claudia Bartoli

Tiziano Allice

Antonio D'Avolio Jessica Cusato Marco Simiele Amedeo de Nicolò Valeria Avataneo

Consuelo Valentini

Prof. SL Letendre

Prof. R Swanstrom Sarah B Joseph Laura P Kincer