Antiretroviral Therapy for Prevention and Management of HIV-Associated Neurocognitive Impairment: What is really changing?

Scott Letendre, M.D.

Associate Professor of Medicine University of California, San Diego

To Understand Where We Are Going, We Must Understand Where We Have Been

-Multiple versions attributed to multiple authors

Portegies Group Publishes Review of CSF Pharmacology in Early HAART Era

	% Protein	Oil/water partition	Molecular	IC ₅₀
Drug	binding	coefficients	weight (Da)	(µmol/l)
Nucleoside analogues				
Zidovudine	34-38	1.1	267	0.01-0.05
Stavudine	Negligible	0.144	224	0.05-0.5
Zalcitabine	< 4		211	0.03-0.5
Didanosine	< 5	0.055	236	1.0–2.5
Lamivudine	< 36		229	0.0030.09
Abacavir	49		404	0.26
Protease inhibitors				
Saguinavir	98	4.1 log ₁₀	767	0.002-0.007
Ritonavir	98-99	3,0	721	0.045
Indinavir	61	2.6 log ₁₀	71 2	0.025-0.1
Nelfinavir	> 99	5.7 log ₁₀	568	0.022
Non-nucleoside reverse transcriptase inhibitors		5.0		
Nevirapine	60	1.8 log ₁₀	266	0.01–0.1
Efavirenz	46	5.0	316	0.03*
Delavirdine	98		516	0.066

Enting et al, AIDS 1998; 12: 1941-55

Early Evaluation of CSF/IC₅₀ Ratios Suggested 3 Categories

Mo	Molecular Protein ARV Concentrations ViroLogic				C	SF / IC	C50	
١	Veight	Binding	Plasma Cmax	CSF	IC50	Low	High	Median
Nucleosid	Nucleoside Analogue Reverse Transcriptase Inhibitors							
Zidovudine	267	34-38	4.49-6.74	0.12-0.41	0.01-0.04	3.0	41	22
Abacavir	404	49	5.2-10.89	0.5-1.83	0.24-1.49	0.34	7.6	4.0
Lamivudine	229	< 36	4.37-8.74	0.05-1.14	0.78-4.90	0.01	1.5	0.74
Stavudine	224	"Negligible"	3.35-6.43	0.20-0.36	0.34-2.12	0.09	1.1	0.58
Didanosine	236	< 5	2.12-11	0.17-0.51	2.53-15.84	0.01	0.20	0.11
Zalcitabine	211	< 4	0.05-0.18	0.003-0.03	0.19-1.22	0.00	0.16	0.08
Non-Nucle	eoside	e Analogu	ue Reverse	Transcrip	tase Inhibitors	5		
Nevirapine	266	60	7.52-16.92	1.3-10.9	0.023-0.142	8.9	474	241
Delavirdine	516	98	15-55	0.02-0.22	0.0006-0.0036	5.6	367	186
Efavirenz	316	99.5	9.2-16.6	0.006-0.09	0.008-0.052	0.12	11	5.7
Protease I	nhibi	tors						
Indinavir	712	60	12.2-13.0	0.03-0.66	0.0031-0.0195	1.5	213	108
Amprenavir	506	90	10.6-19.2	BDL*-0.36	0.0046-0.0289	0	78	39
Nelfinavir	568	> 99	5.63-8.45	BDL*-0.012	0.0014-0.0088	0	8.6	4.3
Saquinavir	767	98	1.85-3.23	BDL*-0.008	0.001-0.006	0	8.0	4.0
Ritonavir	721	98-99	10.5-26	BDL*-0.032	0.0049-0.0308	0	6.5	3.3

Letendre, et al. 8th CROI 2001, Abstract 614

Pre-CPE comparisons of estimated CNS distribution to HIV RNA in CSF

Author	Year	Design	N	Effect	Penetration Measure
Letendre	2004	Р	31	Lower	No. of penetrators
Eggers	2003	Р	40	Similar	Multiple methods
Marra	2003	Р	25	Similar	ZDV, IDV
Antinori	2002	Р	29	Lower	≥ 3 Penetrators
DeLuca	2002	Р	50	Lower	No. of penetrators
Gisolf	2000	Р	27	Lower	SQV-r+d4T vs. SQV-r
Murphy	2000	Р	27	Lower	APV-ZDV-3TC vs. APV
von Giesen	2005	C-S	71	Similar	ZDV, d4T
Solas	2003	C-S	41	Similar	IDV
Lafeuillade	2002	C-S	41	Similar	IDV vs. LPV-r or NFV
Robertson	2002	C-S	98	Similar	No. of penetrators
Antinori	2002	C-S	75	Lower	IDV
DeLuca	2002	C-S	134	Similar	No. of penetrators

- Method of estimating CNS distribution varied substantially
- Results were mixed but prospective analyses were more likely to link greater distribution to lower HIV RNA levels

Pre-CPE comparisons of estimated CNS distribution to NP performance

Author	Year	Design	N	Effect	Penetration Measure
Letendre	2004	Р	31	Better	No. of penetrators
Cysique	2004	Р	97	Better	≥ 3 Penetrators
Evers	2004	Р	110	Better*	Multiple methods
Robertson	2004	Р	29	Similar	No. of penetrators
Sevigny	2004	Р	147	Similar	No. of penetrators
Marra	2003	Р	25	Better	ZDV, IDV
Chang	2003	Р	33	Similar	≥ 2 Penetrators
Dougherty	2002	Р	30	Better*	Single vs. Multiple
Sacktor	2001	Р	73	Similar	Single vs. Multiple
von Giesen	2005	C-S	71	Similar	ZDV, d4T
Antinori	2004	C-S	165	Similar	No. of penetrators
Evers	2004	C-S	306	Better	Multiple methods

- Both CNS distribution estimates and NP methods varied
- Relatively fewer studies reported benefit but again more likely if prospective or larger

Drug Characteristics Protease Inhibitors

	IDV	LPV	DRV	ATV	APV	SQV	TPV
Unbound Fraction	40%	1%	5%	14%	10%	2%	< 0.1%

Molecular Weight

Octanol-Water

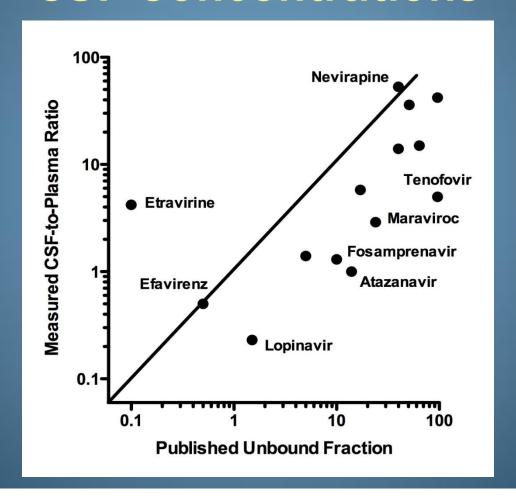
Coeff. (KowWin)

Acid Dissociation

Constant (pKa)

Est. [Drug] _{CSF} (nM)*

CSF IQ**


* Unbound Fraction x Plasma C_{min}

** Est. CSF [Drug] / IC₅₀

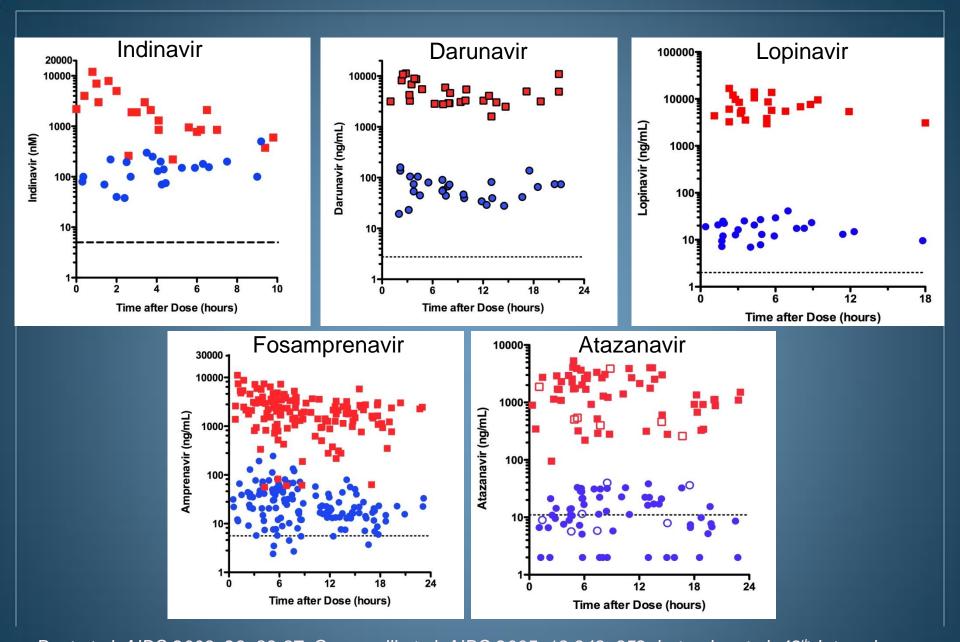
Estimates Based on Plasma Protein Binding Tend to Overestimate CSF Concentrations

Refining an Approach for Comparison

- Enting et al. suggested a standard for judging the extent of antiretroviral distribution into CSF
 - » Protein binding < 90%: Only 2 Pls meet this standard
 - » Molecular weight < 500: No PIs meet this standard</p>
- The CPE was based on traditional HAART (2 NRTIs + PI or NNRTI)
 - » Relative approach within class
 - » Limited to human adult data
 - » Three categories instead of two
 - » Simple method of combining estimates for a combination regimen

CPE Tabulation Protease Inhibitors

	IDV	LPV	DRV	ATV	APV	SQV	TPV
Drug Characteristics	1	0.5	0.5	1	0.5	0.5	0
Pharmacokinetics							
Pharmacodynamics							
Overall							

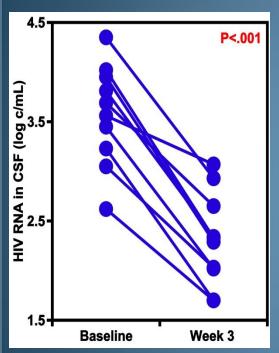

Early CSF Pharmacology Data

- Saquinavir in CSF below 0.29 nM in 26 of 28 individuals¹
- Nelfinavir in CSF below 88 nM in 12 individuals²
- Ritonavir in CSF below 34.5 nM in 19 of 22 individuals³

¹Kravcik et al, JAIDS 1999 ²Lafeuillade et al, HIV Clin Trials 2002 ³Gisolf et al, AIDS 2000

Best et al, AIDS 2009; 23: 83-87; Capparelli et al, AIDS 2005; 19:949–952; Letendre et al, 49th Interscience Conference on Antimicrobial Agents and Chemotherapy, 2009; Letendre et al, 9th Intl Workshop on Clinical Pharmacology of HIV Therapy, 2009; Letendre et al, Antimicrobial Agents and Chemotherapy 2000, 44: 2173

CPE TabulationProtease Inhibitors


	IDV	LPV	DRV	ATV	APV	SQV	TPV
Drug Characteristics	1	0.5	0.5	1	0.5	0.5	0
Pharmacokinetics	1	1	1	0.5	0.5	0	
Pharmacodynamics							

Overall

Pharmacodynamics in the CNS Protease Inhibitor Examples

0.25 0.20-United SE Failure

0.101/11

1/11

1/11

1/11

1/11

1/12

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

1/11

Letendre et al., Clinical Infectious Diseases, 2007

Yeh et al, 14th CROI 2006, Abstract 381 Gutmann et al, AIDS 2010, 24: 2347-54 Vernazza et al, AIDS 2007, 21: 1309-15

Letendre et al, 14th CROI 2007, Abstract 369

CPE Tabulation Protease Inhibitors

	IDV	LPV	DRV	ATV	FPV	SQV	TPV
Drug Characteristics	1	0.5	0.5	1	0.5	0.5	0
Pharmacokinetics	1	1	1	0.5	0.5	0	
Pharmacodynamics	-	1		0.5	-	0	-
Overall	1	1	1	0.5	0.5	0	0
Strength of Evidence	PK	PD	PK	PD	PK	PD	DC

- Most drugs do not have Pharmacodynamic data
- Pharmacodynamic data do not typically alter the Pharmacokinetic categorization

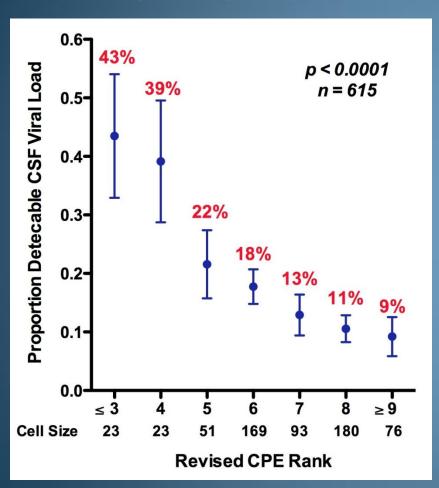
Drug Characteristics Nucleoside/Nucleotide RTIs

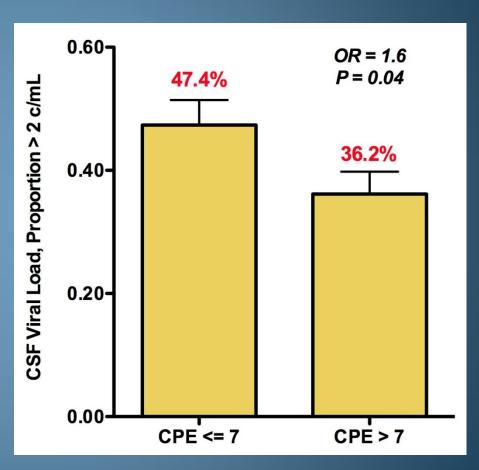
	ZDV	ABC	FTC	3TC	D4T	DDI	TDF
Drug Characteristics	0.5	0.5	1	1	1	0	1
Pharmacokinetics	1	0.5	1	0.5	0.5	0.5	0
Pharmacodynamics	1	0.5	- 1	-	-	0.5	-
Overall	1	0.5	1	0.5	0.5	0.5	0
Strength of Evidence	PD	PD	PK	PK	PK	PD	DC

Drug Characteristics Non-Nucleoside RTIs

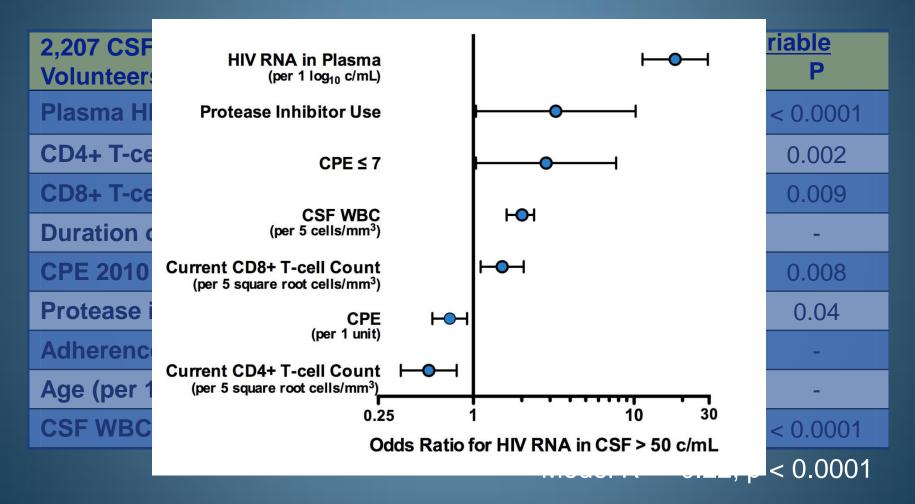
	NVP	EFV	ETR	RPV
Drug Characteristics	1	0.5	0	0.5
Pharmacokinetics	1	0.5	0.5	
Pharmacodynamics	-	1 -	-	-
Overall	1	0.5	0.5	0.5
Strength of Evidence	PK	PK	PK	DC

CNS Penetration Effectiveness Ranks 2010


	Much Above Average	Above Average	Average	Below Average
NRTIs	Zidovudine	Abacavir Emtricitabine	Didanosine Lamivudine Stavudine	Tenofovir
NNRTIs	Nevirapine	Efavirenz	Etravirine	
Pls	Indinavir-r	Darunavir-r Fosamprenavir-r Indinavir Lopinavir-r	Atazanavir Atazanavir-r Fosamprenavir	Nelfinavir Ritonavir Saquinavir Saquinavir-r Tipranavir-r
Entry/Fusion Inhibitors		Maraviroc		Enfuvirtide
Integrase Inhibitors		Raltegravir		

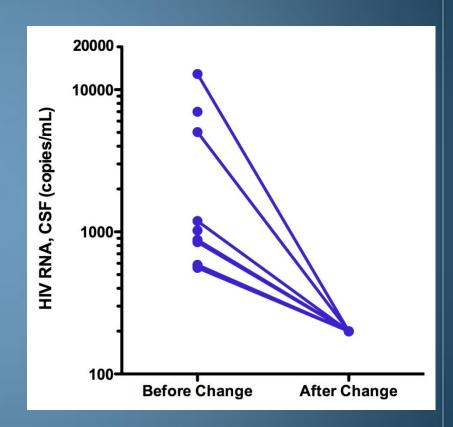

Letendre SL, et al. 17th CROI 2010, Abstract 172

Higher CPE Values Are Associated with Lower HIV RNA Levels in CSF


Letendre S et al, 17th CROI 2010, Abstract 172

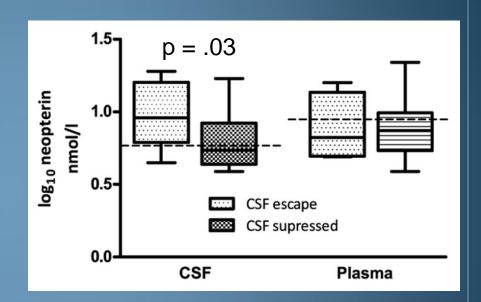
Letendre et al, 16th CROI 2009, Abstract 484b

Correlates of Detectable CSF Viral Loads Over Time During ART


Letendre et al, 19th CROI, 2012, Abstract 473

Lower CPE may also be Associated with "Viral Escape" in CSF during ART

- 11 patients with new neurological symptoms and CSF viral escape during ART
- Drug resistance mutations found in CSF in 7 of 8
- ART modified based on drug resistance testing and CPE
- All patients clinically improved with reduction of HIV in CSF


Canestri et al, Clinical Infectious Diseases 2010, 50:773-778

"Viral Escape" in CSF also Occur without Symptoms

- 69 individuals on 2 NRTIs with either EFV, LPV/r, or ATV/r with HIV RNA in plasma <50 c/ml for >6 months
- 11% had CSF viral escape
 - HIV RNA up to 213 c/ml
 - No association with CPE but viral escape did not occur in anyone taking ZDV or LPV/r

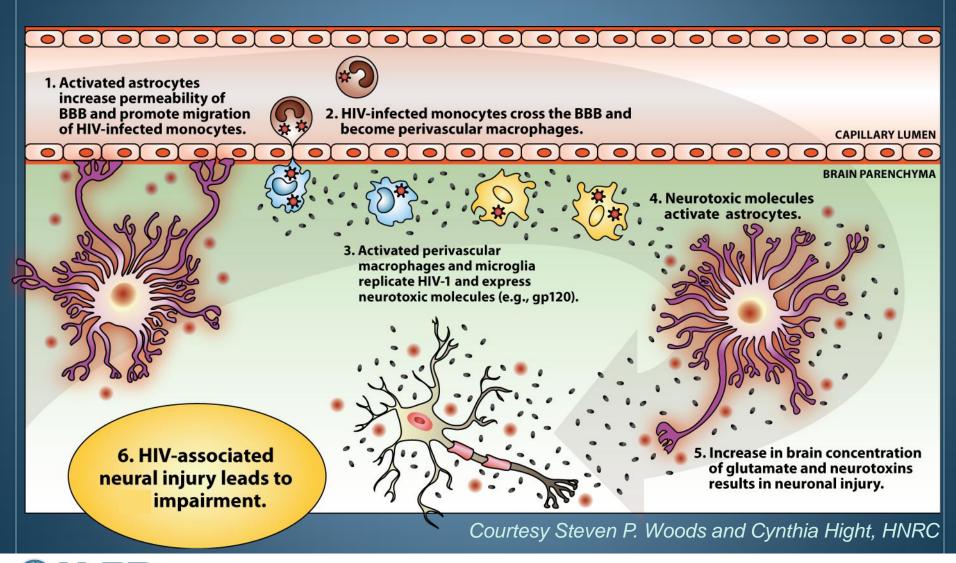
Edén et al, J Infect Dis. 2010;202:1819-1825.

CSF "Viral Escape" in Patients Undergoing LP for Clinical Indications

- 142 HIV+ individuals undergoing LP in London between 2008 and 2010
- CSF viral escape* was present in 30 (21%)
 - » 13% when plasma HIV RNA < 50 c/mL</p>
- When plasma HIV RNA
 50 c/mL, only CPE was associated with detectable
 CSF HIV RNA (p = 0.04)

Factors Associated with CSF HIV RNA in subjects with suspected HIV encephalopathy

	β	р
Plasma HIV RNA	0.438	0.02
Age	-0.095	0.17
CPE	-0.511	0.003


* Defined as CSF RNA > 0.5 log₁₀ c/mL greater than plasma HIV RNA or CSF RNA > 200 c/mL when plasma HIV RNA < 50 c/mL</p>

Rawson T, et al., J Infect (2012), doi:10.1016/j.jinf.2012.04.007

Model of HIV Neuropathogenesis

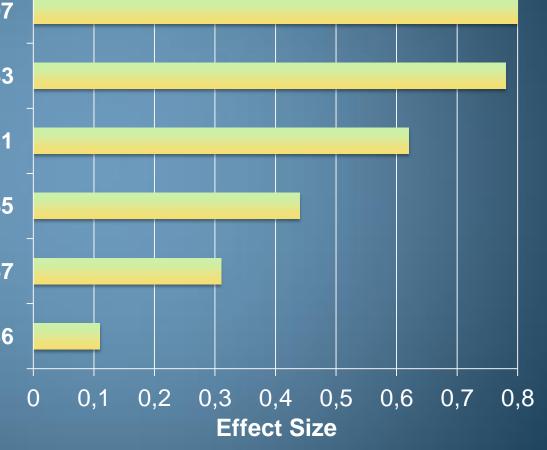
HAND is Composed of 3 Disorders Which May Not Have Common Pathogenesis

	Acquired Impairment in ≥ 2 Cognitive Abilities	Interferes with Daily Functioning	No Cause Prior to HIV	No Current Strongly Confounding Condition
Asymptomatic Neurocognitive Impairment (ANI)		No		
Mild Neurocognitive Disorder (MND)		Mild		
HIV-Associated Dementia (HAD)	Marked	Marked		

Antinori et al, Neurology 2007, 69: 1789-99

Published Studies of Acceptable Quality had Mostly Medium to Large Effect Sizes

Cysique et al, 2004, N = 97


Chang et al, 2003, N = 33

Cysique et al, 2009, N = 31

Tozzi et al, 2009, N = 185

Letendre et al, 2008, N = 467

Smurzynski et al, 2011, N = 2,636

Cysique et al, BMC Neurology, 2011 Nov 22;11:148

Summary of Comparisons of CPE to Different Outcomes

Outcome

CSF HIV RNA

Host CSF Biomarkers

Imaging Biomarkers

HAND

Survival

Findings

Associated with CPE Cross-Sectionally and Longitudinally

Limited Analyses

Limited Analyses

Mixed Findings

Mixed Findings

Influences

Number of ARVs Drug Resistance

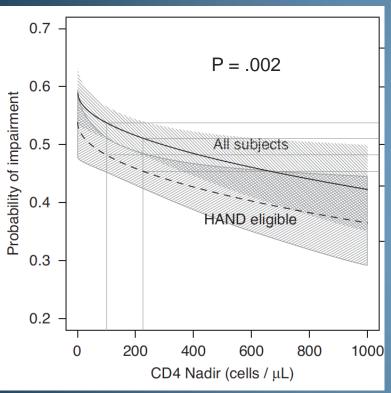
Detectable HIV RNA

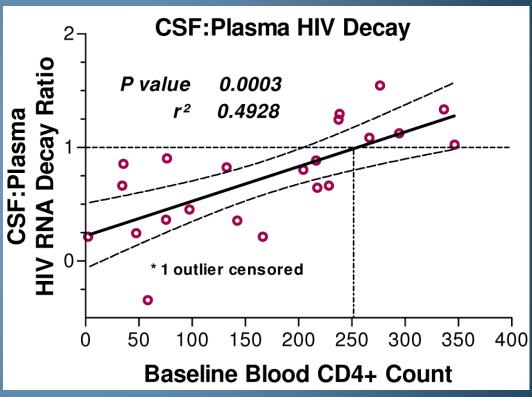
None Identified

Many Modifiers

Detectable HIV RNA, Date

Mitigating Circumstances What Influences Relationships Between CPE and Outcomes?


- Neuroadapted HIV
 - » Nadir CD4 Count
- Other antiretroviral effects
 - » Monocyte efficacy
 - » Neurotoxicity
- BBB permeability


- Neurorelevant comorbidities
 - » Aging
 - » Vascular Disease
 - » Co-infections
- Human genetics
 - » Neuroinflammation
 - » Molecular transporters

Mitigating Circumstances Lower CD4+ T-cell Counts

Ellis, et al. AIDS, 2011, 25: 1747-51

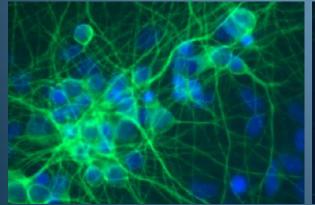
Spudich, et al. BMC Infect Dis, 2005, 5: 98

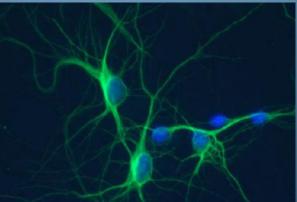
Mitigating Circumstances Monocyte/Macrophage Efficacy

	EC ₅₀ (μΜ)		Fold
	PBL	MDM	Difference
Zidovudine	0.2	0.02	10.0
Didanosine	0.5	0.05	10.0
Zalcitabine	0.04	0.003	13.3
Lamivudine	0.04	0.02	2.0
Stavudine	0.8	0.24	3.3
Abacavir	0.9	0.3	3.0
Tenofovir	0.37	0.02	18.5

Perno et al., Antiviral Research, 2006

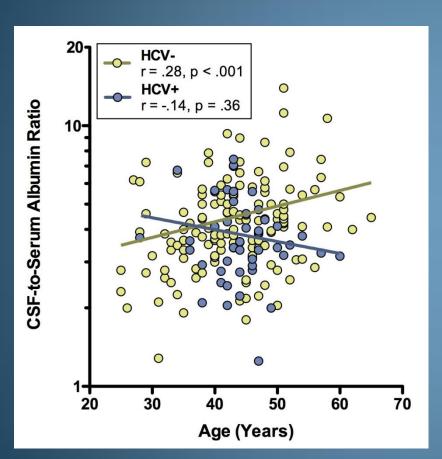
Mitigating Circumstances Drug Neurotoxicity

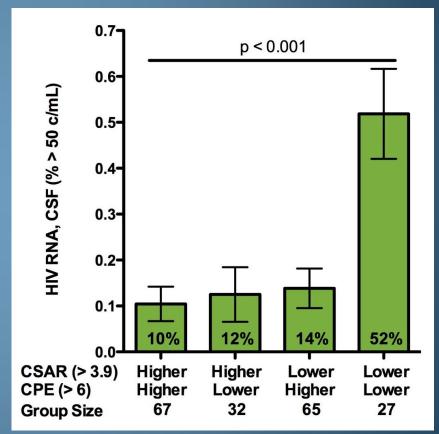

ACTG 5170


- 167 people interrupting ART
- Performance on 2 NP tests improved over 96 weeks, particularly among those who took efavirenz

Robertson et al, Neurology 2010, 74: 1260

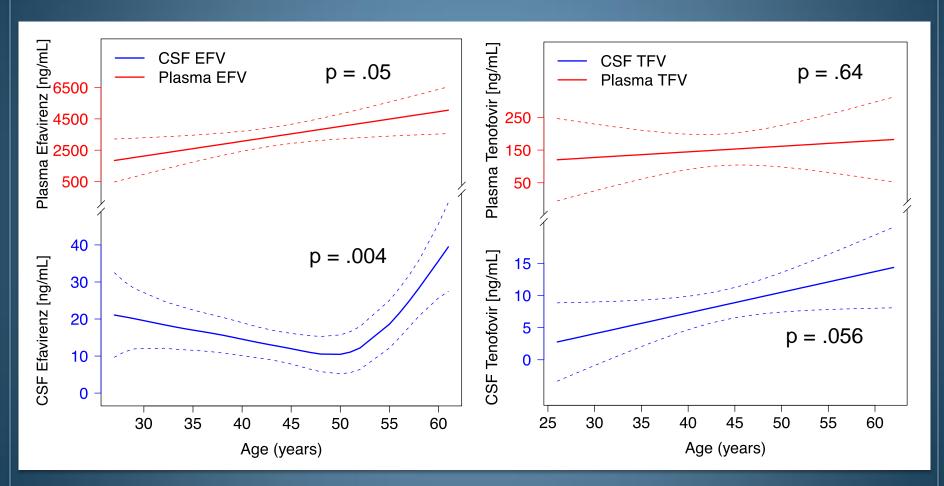
Risk Factor	Odds Ratio	P Value
Age (per 10 years)	0.83	0.29
Education (per 1 year)	0.85	0.002
Non-Italian Born	3.5	0.056
Efavirenz use	4.0	0.008


Ciccarelli et al, Neurology 2011, 76: 1403

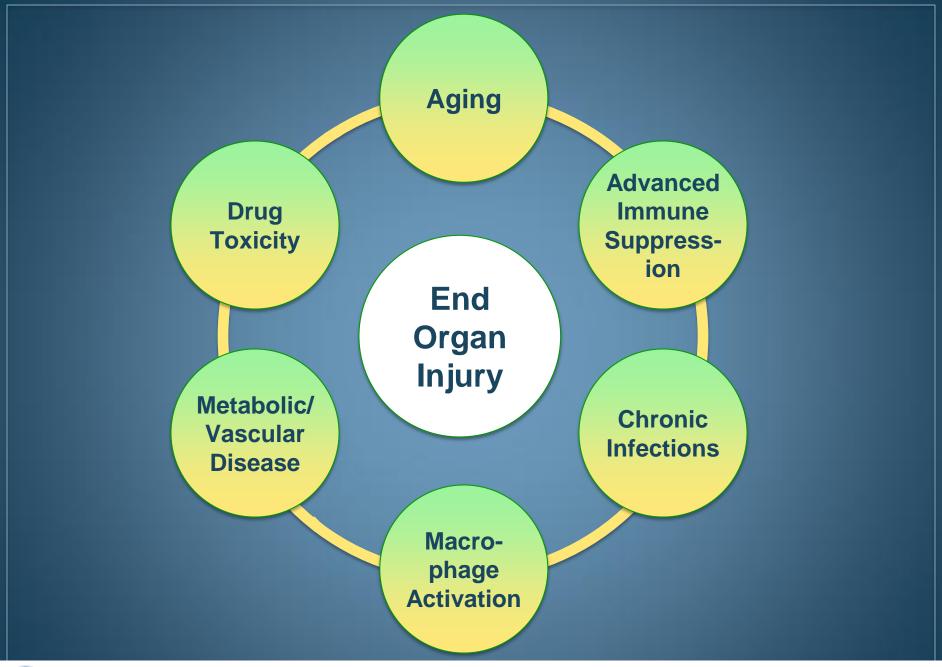


Liner et al, 17th CROI 2010, Abstract 435

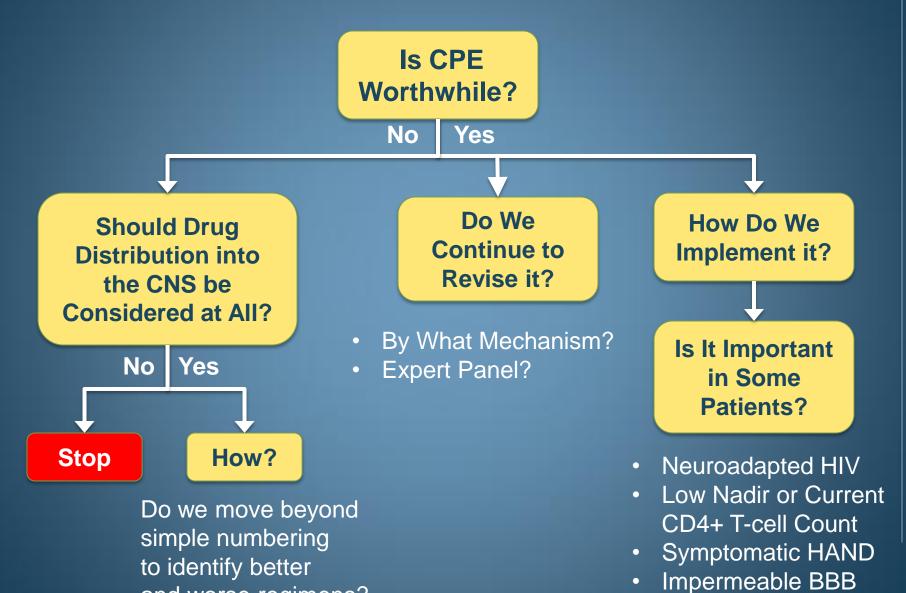
Mitigating Circumstances BBB Permeability



Letendre et al, 18th CROI, 2011, Abstract 408


Aging seems to influence antiretroviral concentrations in CSF

Croteau et al, 19th CROI, 2012, Abstract 592



The Future of CPE

and worse regimens?

2011 EACS Recommended ART

Treatment Naive Individuals

ABC-3TC

TDF-FTC

NVP

EFV

DRV-r

LPV-r

ATV-r

RAL

2011 EACS Recommended ART Treatment Naive Individuals

ABC-3TC

- Therapeutic CSF concentrations with bid dosing
- Concerns about vascular disease

TDF-FTC

- Subtherapeutic
 CSF TDF
 concentrations
- Therapeutic CSF concentrations of FTC
- Good monocyte activity for TDF

NVP

Therapeutic CSF concentrations

Hypersensitivity

 Short- and Longterm Neurotoxicity

DRV-r

Therapeutic CSF concentrations

LPV-r

Therapeutic CSF concentrations

ATV-r

Subtherapeutic CSF concentrations

RAL

Possibly therapeutic CSF concentrations

2011 EACS Management of HAND

Off ART

HAND Diagnosis

On ART

Plasma VL >50c/ml

CSF VL >50c/ml
Plasma VL
<50c/ml

CSF VL <50c/ml Plasma VL <50c/ml

Start plasma and CSF GDR-guided ART

Consider inclusion of potentially CNS-active drugs

Optimize ART by plasma GDR testing (CSF, if VL >50 c/ml)

Consider inclusion of potentially CNS-active drugs

Optimize ART by CSF GDR testing

Include potentially CNS-active drugs

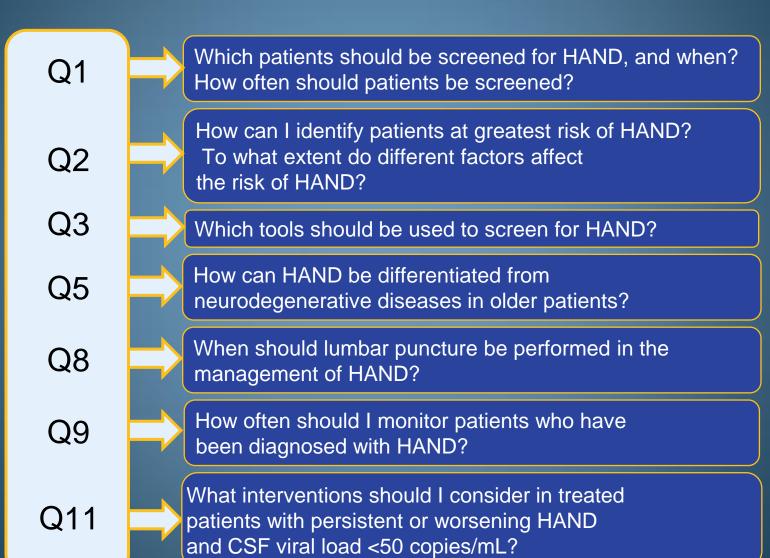
Continue ongoing ART

Consider inclusion of potentially CNS-active drugs

Reconsider other causes of NCI

Repeat 3 questions after 6 months If CSF VL>50 c/ml, consider repeating after 3–6 months Repeat 3 questions after 6 months Repeat CSF after 3–6 months

Repeat 3 questions after 6 months


October 2011; Available at www.europeanaidsclinicalsociety.org/ [accessed 15 Nov 2011]

GDR = Genotypic Drug Resistance

BHIVA Guidelines 30 April 2012

- Start ART in patients with symptomatic HAND irrespective of CD4+ lymphocyte counts
 - » Adequate support to optimise adherence is essential
- Start standard combination ART regimens
 - » CPE score should not influence therapeutic decisions in subjects with NC impairment commencing ART
- With ongoing or worsening NC impairment despite ART
 - » Re-assess for confounding conditions
 - » Obtain CSF and measure HIV RNA
 - » In subjects with detectable CSF HIV RNA
 - » Measure HIV genotropism and genotyping
 - » Based ART modification on plasma and CSF genotypic and genotropism results

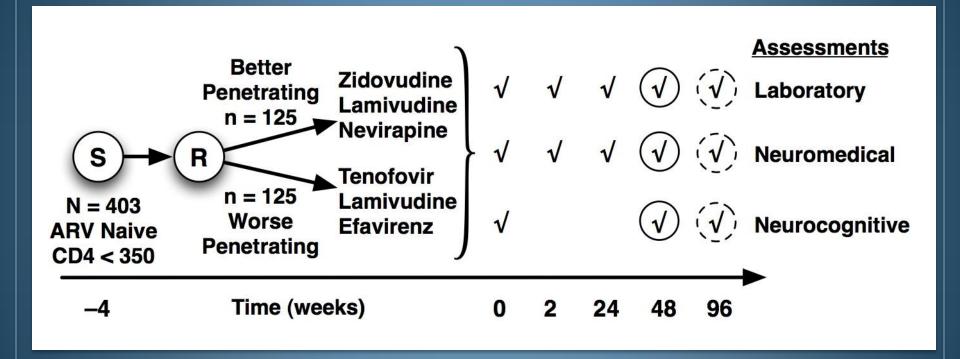
Mind Exchange: Evidence Based Guidelines to Assist in Clinical Decisions

Challenges & Future Directions

- What is the pathogenesis of HAND, particularly with respect to the role of HIV itself and for the milder HAND categories?
 - » Continue to perform cohort studies that include lumbar punctures and biomarker objectives
 - » Refine the definition of HAND based on the risk of change, either progression or improvement. Should we deconflate ANI from MND and HAD?
- How does pathogenesis vary by environment and comorbidities?
 (e.g., human and viral genetics, endemic infections, metabolic and vascular disease, treatment practices)
 - » Continue to perform cohort studies in LMICs that are designed to investigate locally relevant risk conditions. Why do different HIV subtypes differently affect the CNS?

Challenges & Future Directions

- What are the determinants, correlates, and effects of drug distribution into CSF?
 - » Compare CSF and brain tissue drug concentrations
 - Develop imaging methods that can estimate drug distribution into brain tissue
 - » Perform longitudinal analyses of antiretroviral concentrations in CSF that account for other drugs in the regimen
 - » Perform pharmacogenomic analyses to better understand the role of genetic variation in determining drug distribution
 - » Devise an evidence-based approach to implement drug distribution into clinical practice in a way that benefits patients


Challenges & Future Directions

- What is the best approach to preventing and treating HAND?
 - » Perform dedicated interventional studies, either treatment trials targeted at those with a specific risk profile or prevention trials
 - » Add neurocognitive and lumbar puncture objectives to HIV treatment trials when feasible
 - » Investigate treatments other than drugs, such as cognitive rehabilitation and exercise
- Is the CNS important for eradication of HIV?

Design of Actively Enrolling Clinical Trial on HAND Prevention in China

S = Screening R = Randomization

Acknowledgements Study Volunteers

UCSD HNRC

- Ronald J. Ellis
- Igor Grant
- Allen McCutchan
- Bob Heaton
- Edmund CapparelliE
- Brookie Best

Davey Smith

- Tom Marcotte
 - Cris Achim
 - Steven Woods
 - Eliezer Masliah

CHARTER and CIT2

- David Clifford
- Justin McArthur
- Ned Sacktor
- Ann Collier

- Christina Marra
- Susan Morgello
- David Simpson
- Ben Gelman

National Institutes of Health

- ...Mental Health
- ...Drug Abuse
- ...NeurologicalDisorders and Stroke

Pharma

- Abbott Laboratories
- GlaxoSmithKline
- Merck, Inc.
- Janssen
- Gilead Sciences

