Antiretroviral Therapy for Prevention and Management of HIV-Associated Neurocognitive Impairment: What is really changing?

#### Scott Letendre, M.D.

Associate Professor of Medicine University of California, San Diego





# Portegies Group Publishes Review of CSF Pharmacology in Early HAART Era

|                                                 | % Protein  | Oil/water partition   | Molecular   | IC <sub>50</sub> |
|-------------------------------------------------|------------|-----------------------|-------------|------------------|
| Drug                                            | binding    | coefficients          | weight (Da) | (µmõl/i)         |
| Nucleoside analogues                            |            |                       |             |                  |
| Zidovudine                                      | 34–38      | 1.1                   | 267         | 0.01-0.05        |
| Stavudine                                       | Negligible | 0.144                 | 224         | 0.05-0.5         |
| Zalcitabine                                     | ~ 4        |                       | 211         | 0.03-0.5         |
| Didanosine                                      | < 5        | 0.055                 | 236         | 1.0-2.5          |
| Lamivudine                                      | < 36       |                       | 229         | 0.0030.09        |
| Abacavir                                        | 49         |                       | 404         | 0.26             |
| Protease inhibitors                             |            |                       |             |                  |
| Saguinavir                                      | 98         | 4.1 log <sub>10</sub> | 767         | 0.002-0.007      |
| Ritonavir                                       | 98-99      | 010                   | 721         | 0.045            |
| Indinavir                                       | 61         | 2.6 log10             | 712         | 0.025-0.1        |
| Nelfinavir                                      | > 99       | 5.7 log10             | 568         | 0.022            |
| Non-nucleoside reverse transcriptase inhibitors |            | 0.0                   |             |                  |
| Nevirapine                                      | 60         | 1.8 log <sub>10</sub> | 266         | 0.01-0.1         |
| Efavirenz                                       | 46         |                       | 316         | 0.03*            |
| Delavirdine                                     | 98         |                       | 516         | 0.066            |

Enting et al, AIDS 1998; 12: 1941-55





# Pre-CPE comparisons of estimated CNS distribution to HIV RNA in CSF

| Author      | Year | Design | Ν   | Effect  | Penetration Measure  |
|-------------|------|--------|-----|---------|----------------------|
| Letendre    | 2004 | Ρ      | 31  | Lower   | No. of penetrators   |
| Eggers      | 2003 | Р      | 40  | Similar | Multiple methods     |
| Marra       | 2003 | Р      | 25  | Similar | ZDV, IDV             |
| Antinori    | 2002 | Р      | 29  | Lower   | ≥ 3 Penetrators      |
| DeLuca      | 2002 | Р      | 50  | Lower   | No. of penetrators   |
| Gisolf      | 2000 | Р      | 27  | Lower   | SQV-r+d4T vs. SQV-r  |
| Murphy      | 2000 | Р      | 27  | Lower   | APV-ZDV-3TC vs. APV  |
| von Giesen  | 2005 | C-S    | 71  | Similar | ZDV, d4T             |
| Solas       | 2003 | C-S    | 41  | Similar | IDV                  |
| Lafeuillade | 2002 | C-S    | 41  | Similar | IDV vs. LPV-r or NFV |
| Robertson   | 2002 | C-S    | 98  | Similar | No. of penetrators   |
| Antinori    | 2002 | C-S    | 75  | Lower   | IDV                  |
| DeLuca      | 2002 | C-S    | 134 | Similar | No. of penetrators   |

- Method of estimating CNS distribution varied substantially
- Results were mixed but prospective analyses were more likely to link greater distribution to lower HIV RNA levels

# Pre-CPE comparisons of estimated CNS distribution to NP performance

| Author     | Year | Design | Ν   | Effect  | Penetration Measure |
|------------|------|--------|-----|---------|---------------------|
| Letendre   | 2004 | P      | 31  | Better  | No. of penetrators  |
| Cysique    | 2004 | P      | 97  | Better  | ≥ 3 Penetrators     |
| Evers      | 2004 | Р      | 110 | Better* | Multiple methods    |
| Robertson  | 2004 | P      | 29  | Similar | No. of penetrators  |
| Sevigny    | 2004 | P      | 147 | Similar | No. of penetrators  |
| Marra      | 2003 | Р      | 25  | Better  | ZDV, IDV            |
| Chang      | 2003 | Р      | 33  | Similar | ≥ 2 Penetrators     |
| Dougherty  | 2002 | Р      | 30  | Better* | Single vs. Multiple |
| Sacktor    | 2001 | Ρ      | 73  | Similar | Single vs. Multiple |
| von Giesen | 2005 | C-S    | 71  | Similar | ZDV, d4T            |
| Antinori   | 2004 | C-S    | 165 | Similar | No. of penetrators  |
| Evers      | 2004 | C-S    | 306 | Better  | Multiple methods    |

- Both CNS distribution estimates and NP methods varied
- Relatively fewer studies reported benefit but again more likely if prospective or larger

## Early Evaluation of CSF/IC<sub>50</sub> Ratios Suggested 3 Categories

| M           | olecula                                              | ar Protein   | ARV Concen  | trations   | ViroLogic       | C    | SF / IC | C50    |
|-------------|------------------------------------------------------|--------------|-------------|------------|-----------------|------|---------|--------|
| ١           | Neight                                               | Binding      | Plasma Cmax | CSF        | IC50            | Low  | High    | Median |
| Nucleosid   | Nucleoside Analogue Reverse Transcriptase Inhibitors |              |             |            |                 |      |         |        |
| Zidovudine  | 267                                                  | 34-38        | 4.49-6.74   | 0.12-0.41  | 0.01-0.04       | 3.0  | 41      | 22     |
| Abacavir    | 404                                                  | 49           | 5.2-10.89   | 0.5-1.83   | 0.24-1.49       | 0.34 | 7.6     | 4.0    |
| Lamivudine  | 229                                                  | < 36         | 4.37-8.74   | 0.05-1.14  | 0.78-4.90       | 0.01 | 1.5     | 0.74   |
| Stavudine   | 224                                                  | "Negligible" | 3.35-6.43   | 0.20-0.36  | 0.34-2.12       | 0.09 | 1.1     | 0.58   |
| Didanosine  | 236                                                  | < 5          | 2.12-11     | 0.17-0.51  | 2.53-15.84      | 0.01 | 0.20    | 0.11   |
| Zalcitabine | 211                                                  | < 4          | 0.05-0.18   | 0.003-0.03 | 0.19-1.22       | 0.00 | 0.16    | 0.08   |
| Non-Nucle   | eosid                                                | e Analogu    | le Reverse  | Transcrip  | tase Inhibitors | ;    |         |        |
| Nevirapine  | 266                                                  | 60           | 7.52-16.92  | 1.3-10.9   | 0.023-0.142     | 8.9  | 474     | 241    |
| Delavirdine | 516                                                  | 98           | 15-55       | 0.02-0.22  | 0.0006-0.0036   | 5.6  | 367     | 186    |
| Efavirenz   | 316                                                  | 99.5         | 9.2-16.6    | 0.006-0.09 | 0.008-0.052     | 0.12 | 11      | 5.7    |
| Protease    | Inhib                                                | itors        |             |            |                 |      |         |        |
| Indinavir   | 712                                                  | 60           | 12.2-13.0   | 0.03-0.66  | 0.0031-0.0195   | 1.5  | 213     | 108    |
| Amprenavir  | 506                                                  | 90           | 10.6-19.2   | BDL*-0.36  | 0.0046-0.0289   | 0    | 78      | 39     |
| Nelfinavir  | 568                                                  | > 99         | 5.63-8.45   | BDL*-0.012 | 0.0014-0.0088   | 0    | 8.6     | 4.3    |
| Saquinavir  | 767                                                  | 98           | 1.85-3.23   | BDL*-0.008 | 0.001-0.006     | 0    | 8.0     | 4.0    |
| Ritonavir   | 721                                                  | 98-99        | 10.5-26     | BDL*-0.032 | 0.0049-0.0308   | 0    | 6.5     | 3.3    |

#### Letendre, et al. 8<sup>th</sup> CROI 2001, Abstract 614





## Drug Characteristics Protease Inhibitors

|                                     | IDV | LPV | DRV | ATV                   | APV                        | SQV                              | TPV                |
|-------------------------------------|-----|-----|-----|-----------------------|----------------------------|----------------------------------|--------------------|
| Unbound Fraction                    | 40% | 1%  | 5%  | 14%                   | 10%                        | 2%                               | < 0.1%             |
| Molecular Weight                    |     |     |     |                       |                            |                                  |                    |
| Octanol-Water<br>Coeff. (KowWin)    |     |     |     |                       |                            |                                  |                    |
| Acid Dissociation<br>Constant (pKa) |     |     |     |                       |                            |                                  |                    |
| Est. [Drug] <sub>CSF</sub> (nM)*    |     |     |     |                       |                            |                                  |                    |
| CSF IQ**                            |     |     |     |                       |                            |                                  |                    |
|                                     |     |     |     | * Unbour<br>** Est. C | nd Fractior<br>SF [Drug] / | n x Plasma<br>/ IC <sub>50</sub> | a C <sub>min</sub> |
|                                     |     |     |     |                       |                            |                                  |                    |





### Estimates Based on Plasma Protein Binding Tend to Overestimate CSF Concentrations





🔫 UCSD

## Refining an Approach for Comparison

- Based on the standard suggested by Enting et al, two PIs would meet the protein binding standard and none would meet the molecular weight standard
  - » Protein binding < 90%</p>
  - » Molecular weight < 500
- CPE developed based on traditional HAART (2 NRTIs + PI or NNRTI)
  - » Relative approach within class
  - » Limited to human data
  - » Three categories instead of two
  - » Simple method of combining estimates for a combination regimen





|                      | <b>CPE Tabulation</b><br><b>Protease Inhibitors</b> |     |     |     |     |     |     |  |
|----------------------|-----------------------------------------------------|-----|-----|-----|-----|-----|-----|--|
|                      | IDV                                                 | LPV | DRV | ATV | APV | SQV | TPV |  |
| Drug Characteristics | 1                                                   | 0.5 | 0.5 | 1   | 0.5 | 0.5 | 0   |  |
| Pharmacokinetics     |                                                     |     |     |     |     |     |     |  |
| Pharmacodynamics     |                                                     |     |     |     |     |     |     |  |
| Overall              |                                                     |     |     |     |     |     |     |  |
|                      |                                                     |     |     |     |     |     |     |  |
|                      |                                                     |     |     |     |     |     |     |  |
|                      |                                                     |     |     |     |     |     |     |  |
|                      |                                                     |     |     |     |     |     |     |  |
|                      |                                                     |     |     |     |     |     |     |  |
|                      |                                                     |     |     |     |     |     |     |  |





#### Early CSF Pharmacology Data

- Saquinavir in CSF below 0.29 nM in 26 of 28 individuals<sup>1</sup>
- Nelfinavir in CSF below 88 nM in 12 individuals<sup>2</sup>
- Ritonavir in CSF below 34.5 nM in 19 of 22 individuals<sup>3</sup>

<sup>1</sup>Kravcik et al, JAIDS 1999 <sup>2</sup>Lafeuillade et al, HIV Clin Trials 2002 <sup>3</sup>Gisolf et al, AIDS 2000







Best et al, AIDS 2009; 23: 83-87; Capparelli et al, AIDS 2005; 19:949–952; Letendre et al, 49<sup>th</sup> Interscience Conference on Antimicrobial Agents and Chemotherapy, 2009; Letendre et al, 9<sup>th</sup> Intl Workshop on Clinical Pharmacology of HIV Therapy, 2009; Letendre et al, Antimicrobial Agents and Chemotherapy 2000, 44: 2173

## **CPE Tabulation** *Protease Inhibitors*

|                      | IDV | LPV | DRV | ATV | APV | SQV | TPV |
|----------------------|-----|-----|-----|-----|-----|-----|-----|
| Drug Characteristics | 1   | 0.5 | 0.5 | 1   | 0.5 | 0.5 | 0   |
| Pharmacokinetics     | 1   | 1   | 1   | 0.5 | 0.5 | 0   | -   |
| Pharmacodynamics     |     |     |     |     |     |     |     |
| Overall              |     |     |     |     |     |     |     |
|                      |     |     |     |     |     |     |     |
|                      |     |     |     |     |     |     |     |
|                      |     |     |     |     |     |     |     |





### Pharmacodynamics in the CNS Protease Inhibitor Examples



*Letendre et al., Clinical Infectious Diseases, 2007*  Yeh et al, 14<sup>th</sup> CROI 2006, Abstract 381 Gutmann et al, AIDS 2010, 24: 2347-54 Vernazza et al, AIDS 2007, 21: 1309-15 Letendre et al, 14<sup>th</sup> CROI 2007, Abstract 369

## **CPE Tabulation** *Protease Inhibitors*

|                      | IDV | LPV | DRV | ATV | FPV | SQV | TPV |
|----------------------|-----|-----|-----|-----|-----|-----|-----|
| Drug Characteristics | 1   | 0.5 | 0.5 | 1   | 0.5 | 0.5 | 0   |
| Pharmacokinetics     | 1   | 1   | 1   | 0.5 | 0.5 | 0   | -   |
| Pharmacodynamics     | -   | 1   | -   | 0.5 | -   | 0   | -   |
| Overall              | 1   | 1   | 1   | 0.5 | 0.5 | 0   | 0   |
| Strength of Evidence | PK  | PD  | PK  | PD  | PK  | PD  | DC  |

- Most drugs do not have Pharmacodynamic data
- Pharmacodynamic data do not typically alter the Pharmacokinetic categorization





## Drug Characteristics Nucleoside/Nucleotide RTIs

|                      | ZDV | ABC | FTC | 3TC | D4T | DDI | TDF |
|----------------------|-----|-----|-----|-----|-----|-----|-----|
| Drug Characteristics | 0.5 | 0.5 | 1   | 1   | 1   | 0   | 1   |
| Pharmacokinetics     | 1   | 0.5 | 1   | 0.5 | 0.5 | 0.5 | 0   |
| Pharmacodynamics     | 1   | 0.5 | -   | -   | -   | 0.5 | -   |
| Overall              | 1   | 0.5 | 1   | 0.5 | 0.5 | 0.5 | 0   |
| Strength of Evidence | PD  | PD  | PK  | PK  | PK  | PD  | DC  |





### Drug Characteristics Non-Nucleoside RTIs

|                      | NVP | EFV | ETR | RPV |
|----------------------|-----|-----|-----|-----|
| Drug Characteristics | 1   | 0.5 | 0   | 0.5 |
| Pharmacokinetics     | 1   | 0.5 | 0.5 | -   |
| Pharmacodynamics     | -   | -   | -   | -   |
| Overall              | 1   | 0.5 | 0.5 | 0.5 |
| Strength of Evidence | PK  | PK  | PK  | DC  |





#### **CNS Penetration Effectiveness Ranks 2010**

|                            | Much Above<br>Average | Above<br>Average | Average       | Below<br>Average |
|----------------------------|-----------------------|------------------|---------------|------------------|
| NRTIs                      | Zidovudine            | Abacavir         | Didanosine    | Tenofovir        |
|                            |                       | Emtricitabine    | Lamivudine    |                  |
|                            |                       |                  | Stavudine     |                  |
| NNRTIS                     | Nevirapine            | Efavirenz        | Etravirine    |                  |
| Pls                        | Indinavir-r           | Darunavir-r      | Atazanavir    | Nelfinavir       |
|                            |                       | Fosamprenavir-r  | Atazanavir-r  | Ritonavir        |
|                            |                       | Indinavir        | Fosamprenavir | Saquinavir       |
|                            |                       | Lopinavir-r      |               | Saquinavir-r     |
|                            |                       |                  |               | Tipranavir-r     |
| Entry/Fusion<br>Inhibitors |                       | Maraviroc        |               | Enfuvirtide      |
| Integrase<br>Inhibitors    |                       | Raltegravir      |               |                  |

Letendre SL, et al. 17<sup>th</sup> CROI 2010, Abstract 172





# Higher CPE Values Are Associated with Lower HIV RNA Levels in CSF





HIV NEUROBEHAVIORAL RESEARCH PROGRAM | UNIVERSITY OF CALIFORNIA, SAN DIEGO

🔫 UCSD

#### Correlates of Detectable CSF Viral Loads Over Time During ART



Letendre et al, 19<sup>th</sup> CROI, 2012, Abstract 473



HIV NEUROBEHAVIORAL RESEARCH PROGRAM | UNIVERSITY OF CALIFORNIA, SAN DIEGO

축 UCSD

## Published Studies of Acceptable Quality had Mostly Medium to Large Effect Sizes





#### **Model of HIV Neuropathogenesis** 1. Activated astrocytes increase permeability of **BBB** and promote migration 2. HIV-infected monocytes cross the BBB and of HIV-infected monocytes. become perivascular macrophages. **CAPILLARY LUMEN** 0 0 **BRAIN PARENCHYMA** 4. Neurotoxic molecules activate astrocytes. 3. Activated perivascular macrophages and microglia replicate HIV-1 and express neurotoxic molecules (e.g., gp120). 6. HIV-associated 5. Increase in brain concentration of glutamate and neurotoxins neural injury leads to results in neuronal injury. impairment.



🔫 UCSD

## Summary of Comparisons of CPE to Different Outcomes

|   | Outcome                |  | Findings                                                           | Influences                        |  |  |
|---|------------------------|--|--------------------------------------------------------------------|-----------------------------------|--|--|
| V | CSF HIV RNA            |  | Associated with<br>CPE Cross-<br>Sectionally and<br>Longitudinally | Number of ARVs<br>Drug Resistance |  |  |
|   | Host CSF<br>Biomarkers |  | Limited<br>Analyses                                                | Detectable<br>HIV RNA             |  |  |
|   | Imaging<br>Biomarkers  |  | Limited<br>Analyses                                                | None Identified                   |  |  |
| , | HAND                   |  | Mixed<br>Findings                                                  | Many Modifiers                    |  |  |
|   | Survival               |  | Mixed<br>Findings                                                  | Detectable<br>HIV RNA, Date       |  |  |

More Causally Distant from Pharmcology

Mitigating Circumstances What Influences Relationships Between CPE and Outcomes?

- Neuroadapted HIV
   » Nadir CD4 Count
- Other effects of antiretrovirals
  - » Monocyte efficacy
  - » Neurotoxicity
- BBB permeability

- Neurorelevant comorbidities
  - » Aging
  - » Vascular Disease
  - » Co-infections
- Human Genetics
  - » Neuroinflammation
  - » Molecular transporters



< UCSD

#### Mitigating Circumstances Lower CD4+ T-cell Counts





HIV NEUROBEHAVIORAL RESEARCH PROGRAM | UNIVERSITY OF CALIFORNIA, SAN DIEGO

<del>र</del> UCSD

#### Mitigating Circumstances Monocyte/Macrophage Efficacy

|             | EC <sub>50</sub> (μΜ) |       | Fold       |
|-------------|-----------------------|-------|------------|
|             | PBL                   | MDM   | Difference |
| Zidovudine  | 0.2                   | 0.02  | 10.0       |
| Didanosine  | 0.5                   | 0.05  | 10.0       |
| Zalcitabine | 0.04                  | 0.003 | 13.3       |
| Lamivudine  | 0.04                  | 0.02  | 2.0        |
| Stavudine   | 0.8                   | 0.24  | 3.3        |
| Abacavir    | 0.9                   | 0.3   | 3.0        |
| Tenofovir   | 0.37                  | 0.02  | 18.5       |

Perno et al., Antiviral Research, 2006





#### Mitigating Circumstances Drug Neurotoxicity

#### ACTG 5170

- 167 people interrupting ART
- Performance on 2 NP tests improved over 96 weeks, particularly among those who took efavirenz

Robertson et al, Neurology 2010, 74: 1260

| Risk Factor            | Odds<br>Ratio | P<br>Value |
|------------------------|---------------|------------|
| Age (per 10 years)     | 0.83          | 0.29       |
| Education (per 1 year) | 0.85          | 0.002      |
| Non-Italian Born       | 3.5           | 0.056      |
| Efavirenz use          | 4.0           | 0.008      |

Ciccarelli et al, Neurology 2011, 76: 1403



Liner et al, 17<sup>th</sup> CROI 2010, Abstract 435

#### Mitigating Circumstances BBB Permeability



#### Letendre et al, Unpublished CHARTER Data



2011, Abstract 408

HIV NEUROBEHAVIORAL RESEARCH PROGRAM | UNIVERSITY OF CALIFORNIA, SAN DIEGO

🔫 UCSD

# Aging seems to influence antiretroviral concentrations in CSF



Croteau et al, 19<sup>th</sup> CROI, 2012, Abstract 592



HIV NEUROBEHAVIORAL RESEARCH PROGRAM | UNIVERSITY OF CALIFORNIA, SAN DIEGO

<del>र U</del>CSD

### Mitigating Circumstances Human Genetics





HIV NEUROBEHAVIORAL RESEARCH PROGRAM | UNIVERSITY OF CALIFORNIA, SAN DIEGO

🗢 UCSD





HIV NEUROBEHAVIORAL RESEARCH PROGRAM | UNIVERSITY OF CALIFORNIA, SAN DIEGO

🔫 UCSD

#### How Do We Move Forward?







# Should We Reformulate the Phenotypes?

|                          | Presymptomatic | Symptomatic<br>Mild | Symptomatic<br>Moderate to<br>Severe |
|--------------------------|----------------|---------------------|--------------------------------------|
| Immune Activation        | <b>v</b>       | <b>V</b>            | <b>v</b>                             |
| Comorbid Diseases        | ±              | ±                   | ±                                    |
| Drug Neurotoxicity       | ±              | ±                   | ±                                    |
| Neuronal/Synaptic Injury |                | <b>V</b>            | <b>v</b>                             |
| HIV Adaptation           |                |                     | <b>~</b>                             |











### What is Most Achievable?

#### **US DHHS Preferred Regimens**







#### What is Most Achievable?

#### **US DHHS Alternative Regimens**

| ABC-3TC | <ul> <li>CSF PK data based on bid dosing</li> <li>Cardiovascular concerns</li> <li>Unsupportive clinical trial</li> </ul> |   |
|---------|---------------------------------------------------------------------------------------------------------------------------|---|
| RPV     | <ul><li>No CSF PK data</li><li>CNS AEs lower than EFV</li></ul>                                                           |   |
| LPV-r   | <ul> <li>Supportive PK and PD data</li> <li>CSF PK data based on soft gel formulation</li> </ul>                          | • |
| FPV-r   | <ul> <li>Good PK data with 90+%<br/>supratherapeutic levels in CSF</li> <li>Acceptance issues among treaters</li> </ul>   | • |



#### **ZDV-3TC**

- Acceptable regimen
- Bone marrow suppression
- Lower dose than in ADC trial
- Acceptance issues among treaters





## Acknowledgements **Study Volunteers**

#### **UCSD HNRC**

- Ronald J. Ellis
- Igor Grant
- Allen McCutchan
- Bob Heaton
- Edmund Capparelli Eliezer Masliah
- **Brookie Best**

#### **CHARTER and CIT2**

- David Clifford
- Justin McArthur
- Ned Sacktor
- Ann Collier

- Davey Smith
- Tom Marcotte
  - Cris Achim
  - Steven Woods

#### Christina Marra

- Susan Morgello
- David Simpson
- Ben Gelman

#### **National Institutes of** Health

- ...Mental Health
- ...Drug Abuse
  - ...Neurological **Disorders and Stroke**

#### Pharma

- Abbott Laboratories
- GlaxoSmithKline
- Merck, Inc.
- Janssen
- Gilead Sciences



