Neuroimaging of HIV-Related CNS Complications for Non-Experts

Beau M. Ances, MD, PhD, MSc, FANA Associate Professor Departments of Neurology, Radiology, Biomedical Engineering, Microbiology Washington University in St. Louis

June 13, 2014

7th International Symposium on Neuropsychiatry and HIV Barcelona, Spain

Neuroimaging of HIV Associated Neurocognitive Disorders (HAND) for <u>Experts</u>

Beau M. Ances, MD, PhD, MSc, FANA Associate Professor Departments of Neurology, Radiology, Biomedical Engineering, Microbiology Washington University in St. Louis

June 13, 2014

7th International Symposium on Neuropsychiatry and HIV Barcelona, Spain

Beau M. Ances, MD, PhD, MSc Disclosure of Interest

National Institute of Nursing Research (NINR) (R01NR012657, R01NR012907, R01NR014449)

National Institute of Mental Health

National Institute of Mental Health (NIMH) (R21MH099979)

WUSTL Institute for Clinical and Translational Science (ICTS)

alzheimer's Research Grant (NIRG)

CWIDR

WUSTL Center Women's Infectious Disease Research Pilot Grant (cWIDR) Clinical Trials National Institute of Aging (NIA) (RC2AG036535)-Alzheimer's Disease Neuroimaging Initiative (ADNI) Avid Pharmaceuticals

Consultant None

Speakers Bureau

None

I own no stocks or equity in any pharmaceutical company

Outline of Talk

- Introduction: To understand the pathophysiology of HIV associated neurocognitive disorders (HAND)
- Methods: To evaluate advanced neuroimaging methods for assessing HAND
- Results: To evaluate the effects of HIV, co-morbidities, aging, and highly active anti-retroviral therapy (HAART) in the brain using advanced neuroimaging.
- Future: 1) Timelines for biomarkers of HAND 2) Multicenter neuroimaging of HAND

"Doc, I Am Getting More Forgetful"

- A 64 year old Caucasian male presents with mild cognitive changes over the past few years.
- For the past 2-3 years he has noted mild memory issues including: infrequently getting lost, sometimes misplacing objects (i.e. car keys), and occasionally missing appointments.
- Friends have noticed he sometimes repeats words during a conversation and cannot remember names of certain friends ("on the top on my tongue").

"Doc, I Am Getting More Forgetful" - Part 2

- **Past Medical History:** HIV (diagnosed in 1988), PCP (1990), Hepatitis C (1990), drug abuse (1980's), and neuropathy (1994), elevated cholesterol
- No known family history of similar symptoms
- **Meds:** Atripla (has been on numerous HAART regimens in the past), Neurontin, and Lipitor

Exam:

Mental Status: 2/3 recall, 26 on MMSE, 24 on MoCA Cranial nerves: 2-12 intact Motor: Normal tone and bulk, 5/5 throughout Sensory: Diminished sensation below the knees Reflexes; 2+ upper extremities, 1+ patellar, 0 at ankles Coordination/ Gait: Normal

Diagnostic Tests

- CMP and CBC: normal
- Thyroid panel: normal
- Ammonia: 35
- ♦ UA: negative
- ♦ UDS: negative
- ♦ B12: 937
- ♦ Folic acid: 8.1
- RPR: negative

- ◆ CD4 cell count = 489 (Nadir: 54)
- Plasma HIV Viral Load= undetectable
- Neuroimaging: Unremarkable

HAND Pathophysiology and Demographics

HAND Pathophysiology

Blood Brain Barrier

Amyloid Metabolism in HIV

HIV- HIV+ AD

Ortega and Ances, J Neuroimmune Pharmacol, 2014

Rempel and Pulliam, AIDS, 2005

HAND Criteria in the Research Setting- Are Additional Biomarkers Needed?

	Neurologically Normal (NN)	Asymptomatic Neurocognitive Impairment (ANI)	Mild Neurocognitive Disorder(MND)	HIV Associated Dementia (HAD)
Global Deficit Score (GDS)	0	0.5	0.5	>1
Impairment in ≥ 2 Cognitive domains (> 1SD)	No	Yes	Yes	Yes (> 2 SD)
Impairment in Activities of Daily Living	No	No	Yes- Mild	Yes- Marked

Antinori et al., Neurology, 2007

• No neuroimaging or cerebrospinal measures are included in the criteria.

The Continuing NeuroHIV Puzzle: HAND in the Pre and Post-HAART Eras

Pre-HAART

Post-HAART

Adapted from: Heaton, et al. *Neurology* 2010. Also: Robertson, et al. *AIDS* 2007; Simioni, et al. *AIDS* 2010; Garvey *HIV Clin Trials* 2011; Cysique & Brew, *Journal of Neurovirol* 2011; Meyer et al. *Neuroepidemiology* 2013

Incidence but not prevalence of HAND has declined with HAART

What is the Relationship Between HIV and Aging in the Brain?

Effros et al. CID, 2008

Advanced Neuroimaging Techniques

Masters and Ances, Semin Neurol, 2014

Magnetic Resonance Spectroscopy (MRS) Measures Brain Metabolites

NAA= N-acetyl aspartate (neuronal function)

Cho= Choline (membrane turnover)

Lac= Lactate (neuroinflammation)

Cre=Creatine (reference measure)

Blamire et al. Neurology, 2012

Volumetric Brain Segmentation is Performed on T1 Images

Diffusion Tensor Imaging Measures White Matter Changes

Gold et al. Biochim Biophys Acta. 2012

Arterial Spin Labeling (ASL) Measures Cerebral Blood Flow (CBF)

Resting State Functional Connectivity in Clinical Practice?

Resting State Functional Connectivity Magnetic Resonance Imaging (rsfcMRI) Measures Brain Correlations

Raichle, Brain Connectivity, 2011

Graph Models of rs-fcMRI: The Next Level

Graph Theory 202

Hubness (Node importance)

Closeness: average weighted shortest path length between a given node and all other nodes (A,B)

Eigenvector centrality: centrality of a node depends on the centrality of that node's neighbor (A',B')

Entropy (Disorder)

Diversity: measure of graph entropy (variability in connections at a given node) (A,B)

Measures can be applied at the global, network, and node levels

Pittsburgh Compound B (PiB) Imaging Measures Amyloid Deposition

PET Imaging -[¹¹C]6-OH-BTA-1 (PIB)

Klunk et al, Ann Neurol, 2004

Neuroimaging Results

Mechanisms of HIV-Related CNS Injury in the Setting of cART in Our Patient

Early impact of HIV in the CNS soon after seroconversion or "burnt out" state

Co-morbidities (substance abuse, co-infections, mood disorders)

Aging

Delayed HAART exposure or toxicity due to cART within CNS

Ongoing CNS immune activation and active virus

Mechanisms of HIV-Related CNS Injury in the Setting of cART in Our Patient

Early impact of HIV in the CNS soon after seroconversion

(diagnosed in 1988)

Co-morbidities (substance abuse, co-infections, mood disorders)

Aging

Delayed HAART exposure or toxicity due to cART within CNS

Ongoing CNS immune activation

Acute and Early HIV Infection Reduces CBF

Ances et al., Neurology, 2009

16 CHI

Acute and Early HIV Infection Damages the White Matter

Fractional Anisotropy (FA)

Wright et al., under review

Plasma neopterin, CSF and plasma VL, and CD4+ cell counts correlated with FA in CHI but not AEH.

Duration of HIV Infection Affects the Corpus Callosum White Matter Integrity

19 HIV- Controls 62 AEH 16 CHI All HIV+ are untreated

Corpus Callosum Region

Wright et al., under review

12

24

88.0=a

6

rs-fcMRI is Diminished in Chronic HIV+ Individuals

HIV+ = 58 HIV- = 53

Thomas et al., Neurology, 2013

HAND Reduces Caudate CBF in Chronic HIV+ Individuals

Ances et al., Neurology, 2006

Brain Volumetrics Are Diminished in Chronic HIV+ Individuals

HIV- = 26, HIV+/HAART- = 26, HIV+/HAART+ = 26

Mechanisms of HIV-Related CNS Injury in the Setting of cART in Our Patient

Early impact of HIV in the CNS soon after seroconversion or "burnt out" state

Co-morbidities (substance abuse, co-infections, mood disorders)

Aging

Delayed HAART exposure or toxicity due to cART within CNS

Ongoing CNS immune activation and active virus

(virologically suppressed)

Neuroinflammation is Present in Chronic HIV+ Patients Using MRS

Virologically Suppressed Older HIV+ Patients (> 60 years old) Have Greater Functional Correlations Using Rs-fcMRI

Mechanisms of HIV-Related CNS Injury in the Setting of cART in Our Patient

Early impact of HIV in the CNS soon after seroconversion or "burnt out" state

Co-morbidities (substance abuse, co-infections, mood disorders)

(Clade B, Hepatitis C (1992), and drug abuse (1980's), and male)

Aging

Delayed HAART exposure or toxicity due to cART within CNS

Ongoing CNS

immune activation

and active virus

HIV Clade Subtype Does Not Affect Brain Volumetrics

Corpus Callosum

Ortega et al., J Neurovirol., 2013

No Additive Effect of Hepatitis C (HCV) Co-infection on DTI Metrics

Heaps et al., under review

HIV and Previous Methamphetamine Use Independently Reduce CBF

Ances et al., J Neuroimmune Pharmacol., 2011

HIV Status and Not Gender Affects Neuropsychological Performance and Neuroimaging Measures

Mechanisms of HIV-Related CNS Injury in the Setting of cART in Our Patient

Early impact of HIV in the CNS soon after seroconversion or "burnt out" state

Co-morbidities (substance abuse, co-infections, mood disorders)

> Aging (64 years old)

Delayed cART exposure or toxicity due to HAART within CNS

Ongoing CNS immune activation and active virus

HIV and Aging Independently Reduce CBF

Ances et al., JID, 2010

HIV and Aging Independently Reduce Brain Volumetrics

Ances et al. JAIDS, 2012

HIV and Aging Independently Reduce rs-fcMRI

HIV Primarily Affects Hubs While Aging Affects Entropy at the Global and Network Levels

GLOBAL

NETWORK

HIV:Age 0.808622

0.000187

0.000217

-0.000150 0.808622

0.000043 0.808622 0.000042

0.808622

-0.000044

Closeness centrality

		HIV	Age	HIV:Age
DMN	p-value	0.005587	0.226942	0.440119
	beta	-0.001408	-0.000034	-0.000174
PAR	p-value	0.032704	0.255023	0.626612
	beta	-0.003703	-0.000070	-0.000130
UER	p-value	0.200310	0.16/802	0.0930030
	beta	-0.022115	-0.000036	0.000484
CINGO	p-value	0.454033	0.582788	0.626612
	beta	-0.008279	-0.000025	0.000144
OCC	p-value	0.552404	0.255023	0.952956
	beta	-0.002890	-0.000175	0.000014
SMN	p-value	0.552404	0.255023	0.440119
	beta	-0.011797	-0.000275	0.000273

Eigenvector Centrality

-	-	HIV	Age
DMN	p-value	0.754266	0.968081
	beta	-0.007735	-0.000102
PAR	p-value	0.754266	0.802798
	beta	-0.009027	-0.000055
CER	p-value	0.716851	0.802798
	beta	0.002883	-0.000013
CINGO	p-value	0.448733	0.889757
	beta	-0.005049	-0.000052
OCC	p-value	0.273378	0.802798
	beta	-0.006721	0.000047
SMN	p-value	0.273378	0.802798
	beta	-0.002816	0.000136

Diversity

		HIV	A.g.e	HIV:Age
DMN	p-value	0.845908	0.000035	0.291414
	beta	-0.000309	0.000014	0.000009
PAR	<i>ρ</i> -value	0.773990	0.05200730	0.883927
	beta	0.000028	0.000006	0.000001
CER	p-value	0.491484	0.263394	0.08233318 ^t
	beta	-0.000884	-0.000015	0.000018
CINGO	p-value	0.573612	0.05266136 ^t	0.08233318 ^t
	beta	-0.000436	-0.000010	0.000010
OCC	p-value	0.491484	0.263394	0.08233318 ^t
	beta	-0.000535	-0.000005	0.000021
SMN	p-value	0.845908	0.332862	0.187336
	beta	-0.000473	-0.000010	0.000012

Thomas et al., under review

PiB Helps Distinguish AD from HAND

Ances et al. Neurology, 2010; Ances et al, Arch of Neurol., 2012

Effects of HIV and Aging on Amyloid Deposition

MC-SUVR as Function of Age

Ortega and Ances, J Neuroimmune Pharmacol., 2014

Mechanisms of HIV-Related CNS Injury in the Setting of cART in Our Patient

Early impact of HIV in the CNS soon after seroconversion or "burnt out" state

Ongoing CNS immune activation and active virus Co-morbidities (substance abuse, co-infections, mood disorders)

Aging

Delayed HAART exposure or toxicity due to cART within CNS

Atripla (has been on numerous combination antiretroviral therapies (cART) in the past)

Study Design for Assessing Effects of HAART on CBF

HAART Improves Resting CBF

Antiretroviral CNS Penetration-Effectiveness (CPE) Affects Neuroimaging Measures

		CPE					
	1	0.5	0	o =00		* p <	0.05
NRTIS	Abacavir Zidovudine	Emtricitabine Lamivudine Stavudine	Didanosine Tenofovir Zalcitabine	0.700		T	
NNRTIS	Delavirdine Nevirapine	Efavirenz		CLD			
PIs	Amprenavir-r Indinavir-r Lopinavir-r	Amprenavir Atazanavir Atazanavir-r Indinavir	Nelfinavir Ritonavir Saquinavir Saquinavir-r Tipranavir-r	O 0.500 %			Ţ
Fusion Inhibitors			Enfuvirtide	0.300			
	Lete	ndre et al., <i>Arch N</i>	<i>leurol</i> , 2008		HIV- Control (10)	Low CPE (< 1.5) (15)	Hi C (≥ (1

Ances et al., J Neurovirol., 2008

(18)

CPE Does Not Affect Neuropsychological Performance or Brain Volumetrics

Baker et al., under preparation

- Is monocyte efficacy score (MES) is associated with neuroimaging changes?
- MES has previously shown to be associated with neurocognitive impairment (Shikuma et al, Antiviral Therapy 2012)

Additional Work-up of Our Patient

PiB: negative

Reduced global CBF

Are We There Yet? Timeline of Biomarkers For HAND?

Temporal Progression of Biomarkers in HAND

Possible Mechanism(s) for Effects of HIV and HAART in the Brain Using Neuroimaging

Conclusions

- Advanced neuroimaging techniques can help identify brain dysfunction due to HAND.
- Effects of HIV in the brain can be observed soon after seroconversion.
- HIV can lead to a reduction in CBF (using ASL) and rs-fc (using BOLD).
- Additional co-morbidities may affect advanced neuroimaging methods
- HIV and aging independently affect the brain (using ASL, BOLD, volumetrics).
- AD may be differentiated from HAND (using PiB).
- HAART can improve CBF (using ASL). However, CPE does not affect neuroimaging measures.
- <u>Advanced neuroimaging techniques should be considered in the</u> <u>evaluation of the effects of HIV in the brain and could be included</u> <u>in future HAND criteria.</u>

The Future of Neuroimaging

HIV Neuroimaging Cohorts

Name	Participants	Scanner	MRS	Vol	DTI	ASL	BOLD
CHARTER	250 HIV+	1.5 T/ 3T	Х	Х	Х		
MACS	190 HIV+/ 150 HIV-	1.5T/3T	Х	Х	Х		
HIV Neuroimaging Consortium	180 HIV+/ 30 HIV-	1.5 T	Х	Х			
WHIS	56 HIV+/ 12HIV-	3Т		Х	Х		Х
PISCES- Spudich	100 HIV+/20 HIV-	4T	Х	Х	Х		
WUSTL- Ances	400 HIV+/ 100 HIV-	3Т		Х	Х	Х	X
Hawaii- Chang	100 HIV+/70 HIV-	3T	Х	Х			
UCSF- Valcour	60 HIV+/20 HIV-	3T		Х	Х		
Northwestern- Ragin	50 HIV+/20 HIV-	3Т		Х	Х		Х
Stanford- Pfefferbaum & Sullivan	300 HIV+/100 HIV-	1.5 T		Х	Х		
UCSF VA- Meyerhoff	50 HIV+/ 30 HIV-	1.5T		Х			
Brown- Cohen	100 HIV+ /50 HIV-	3Т		Х	Х		
ANRS CO3 Aquitaine	215 HIV+	1.5T		Х	Х		

Limitations: few using advanced neuroimaging methods, few are longitudinal, and few have HIV- controls

AIDS Clinical Trial Group (ACTG) 5310

TG

- Participants: 1 "phantom" subject at all 7 sites and 9 HIV+ patients from 7 sites
- Neuropsychological performance testing and advanced MRI (Volumetrics, ASL, and BOLD) obtained at all 7 sites.

Central Neuroimaging Data Archive (CNDA) at WUSTL

https://cnda.wustl.edu

- Allows for access to national and international data (i.e. DIAN)
- Can handles longitudinal studies with multiple biomarkers
- Pipelines available for processing of advanced neuroimaging methods

Acknowledgements

Ances Neuroimaging Laboratory

- Liang Wang, MD
- Liz Westerhaus, MS
- Matt Brier
- Mario Ortega
- Patrick Wright
- Aaron Tannenbaum
- Laurie Baker (UMSL)
- Jodi Heaps (UMSL)

Knight ADRC

neuroimaging

- John Morris MD
- Tammie Benzinger MD, PhD
- David Holtzman MD
- Marc Raichle MD
- Anne Fagan PhD
- Chengie Xiong PhD
- Avi Snyder MD, PhD
- Alison Goate PhD
- Randall Bateman MD

- <u>Collaborators</u>
 - Robert Paul PhD- UMSL
 - Serena Spudich MD- Yale
 - Victor Valcour MD- UCSF
 - Dan Stein MD- Capetown, SA
 - John Joska MD- Capetown, SA
 - Turner Overton MD- UAB
 - Sarah Cross MD- Vanderbilt
 - David Hass PhD- Vanderbilt

ances

Thank you for your attention Ances Neuroimaging Laboratory at Washington University in St. Louis

http://neuro.wustl.edu/research/researchlabs/anceslaboratory.htm

Please contact with questions, if interested in collaborations, or interested in post-doc positions:

bances@wustl.edu (314) 747- 8423

Analysis of the Restless Brain

D.

C.

Sensorimotor

Modified from Raichle, Brain Connectivity, 2011

Graph Theory 101

REGULAR NETWORK

SMALL-WORLD NETWORK

RANDOM NETWORK

Bullmore and Sporns, Nat Neurosci, 2009

Graph Theory 101

Path Length (L) from 5 to 7 = 5

Existing Connections between Neighbors / Possible Connections between Neighbors

S> 1

$$CC_1 = \frac{2}{\binom{4}{2}} = \frac{2}{6} = .33$$

Neighbors of 1 in blue = 4 Actual connections in red = 2

Small Worldness

$$S = \frac{C/C^0}{L/L^0}$$

Modularity

Path

Length

Clustering

Coefficient

5

Potential HIV Reservoir in the CNS

- The detection of compartmentalized cerebrospinal fluid (CSF) HIV variants with respect to blood suggests existence of a CNS reservoir of HIV infection.
- Compartmentalized CNS HIV has been detected in early infection, though its origin is unknown.

Thai Primary HIV Cohort

Spudich et al., CROI, 2013

Implications for the Clinic

- Viral seeding of the CNS occurs soon after infection.
- Attention to the virus in CNS remains critical as a reservoir can develop.
- Early intervention with anti-retroviral therapy (ART) may be beneficial but additional longitudinal studies needed.
- Lumbar puncture (LP) should be considered when new neurologic symptoms are present in a HIV+ patient, even with good virological control in the plasma.
- Other etiologies besides virological escape may account for neurocognitive impairment.

HIV and Aging Independently Reduce NFL

Krut et al. CROI. 20

CNS Penetration-Effectiveness (CPE) Ranks

	4	3	2	1
NRTIS	Zidovudine	Abacavir	Lamivudine	Didanosine
		Emtricitabine	Stavudine	Tenofovir
				Zalcitabine
NNRTIS	Nevirapine	Delavirdine	Etravirine	
		Efavirenz		
Pls	Indinavir-r	Darunavir-r	Atazanavir	Nelfinavir
		Fosamprenavir-r	Atazanavir-r	Ritonavir
		Indinavir	Fosamprenavir	Saquinavir
		Lopinavir-r		Saquinavir-r
				Tipranavir-r
Entry Inhs	Vicriviroc	Maraviroc		Enfuvirtide
Integrase Inhs		Raltegravir		

Letendre et al., Top in HIV M

HIV Primarily Affects Hubs While Aging Affects Entropy: Node Level

- Nodes with higher centrality had greater decreases with HIV.
- Nodes with lower diversity had greater increases with Age.
Effects of HIV and Aging on Brain Topology Are Similar for Edge Weights

- Changes in edge weight correspond to areas affected by HIV effect on closeness centrality
- Patterns of edge weight changes (increases and decreases) may explain diversity changes seen with Aging