## Obesity, Diabetes, and HIV: Intersecting Epidemic Contributing to NeuroAIDS?

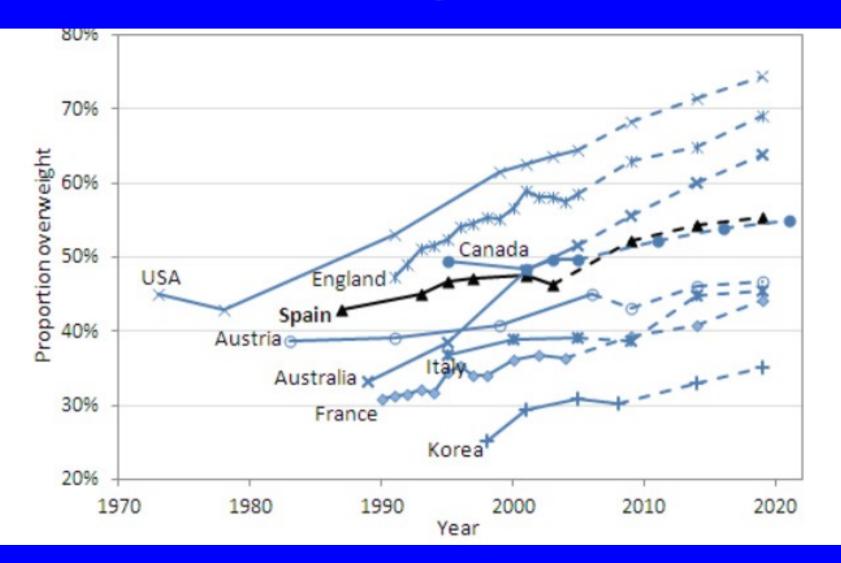
Barcelona, May, 2013

Allen McCutchan, MD, MSc Professor of Medicine HIV Neurobehavioral Research Center UC, San Diego

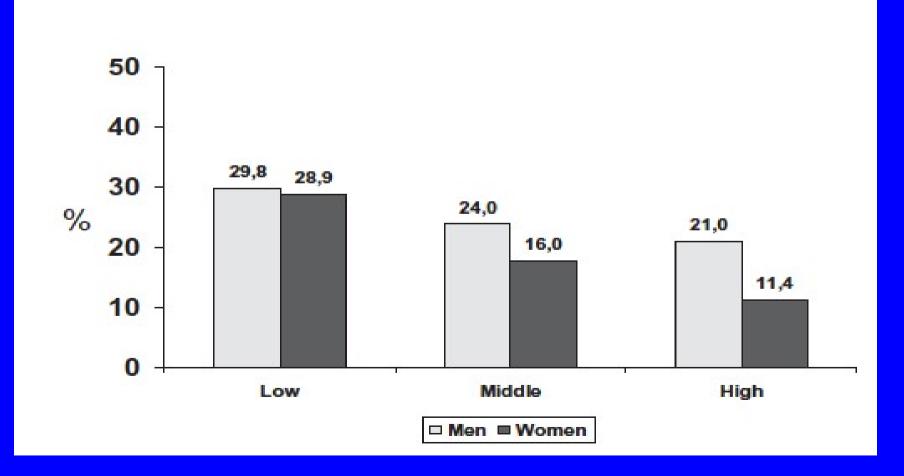
## Background

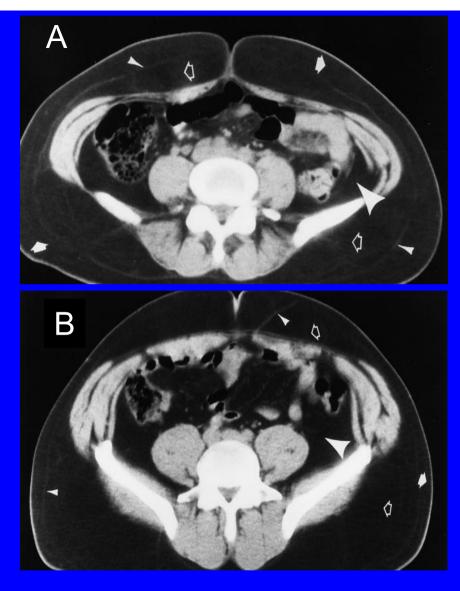
- In HIV-uninfected populations, risk of neurocognitive impairment NCI), is increased by components of the metabolic syndrome:
  - » obesity (central > generalized),
  - » diabetes and and glucose intolerance
  - » atherogenic hyperlipidemias
  - » hypertension
- Mechanisms for these effects are unknown, but may include:
  - » Macro- or micro-vascular disease +/- stroke, or
  - » Neurotoxicity of insulin resistance or hyperglycemia, or
  - » Encephalopathy of systemic inflammation

## Background


- In HIV-infected persons, additional mechanisms of neurocognitive impairment (NCI) may be also come directly from HIV and/or by exposure to ART through:
  - Failure: Continued HIV replication in the brain
  - Side effects: Subclinical IRIS to residual HIV in the brain
  - Possible neural toxicity: specific drugs such as efavirenz have clinical and in vitro neurotoxicity
- Diabetes and insulin resistance increased risk of NCI in older (>55) HIV-infected patients in the Hawaiian cohort. (Valcour, Sacktor, Paul, et al, J Acquir Immune Defic Syndr 2006 ;43:405-41

## Background


Could obesity be contributing to NCI by direct mechanisms or through increasing prevalence of diabetes in HIV patients?


- Obesity, diabetes, and HIV have increased dramatically over the last 3 decades.
- Obesity affects the HIV-infected, antiretroviral-treated populations
  - » In the US Navy, the Body Mass Index is similar in HIV+ and HIV- personnel. (Crum-Cianflone N, Tejidor R, Medina S, et al. Obesity among patients with HIV: the latest epidemic. AIDS Patient Care STDS 2008;22:925-930.)

#### **Proportion of Overweight Adults by Country**

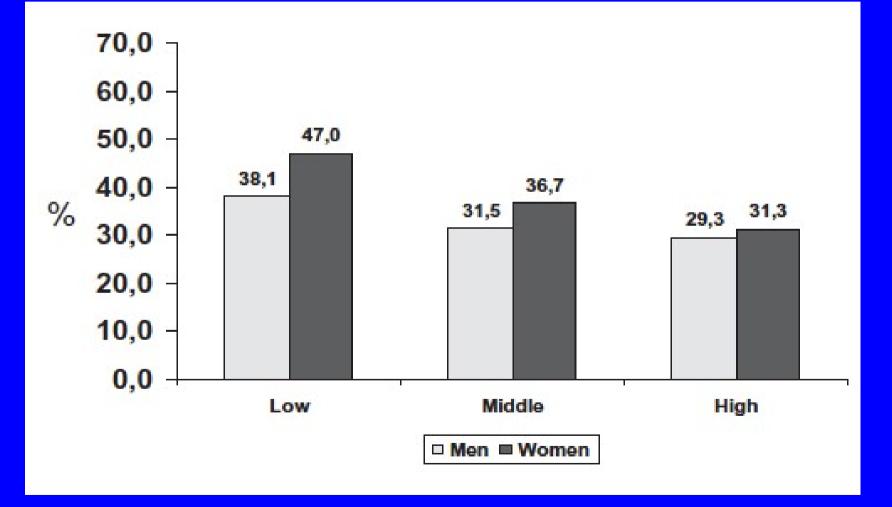


#### Prevalence of Obesity by Educational Levels in Spanish Adults 2008-2010 Obesity Reviews (2012) 13, 388–392

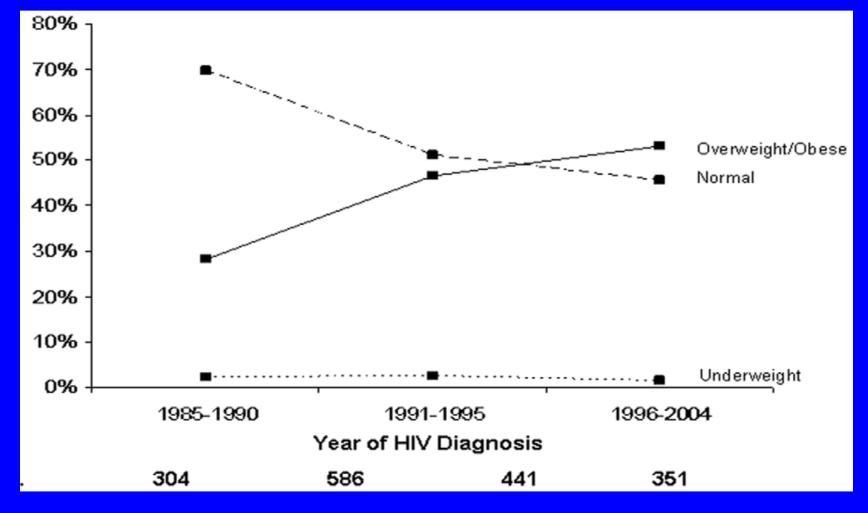




#### Anatomic Divisions of Abdominal Fat


- <u>Subcutaneous</u> fat (SAT) is divided into <u>superficial</u> and deep
- <u>Visceral (VAT)</u> is fat lying within the peritoneum.
- Histology of deep SAT resembles that of VAT.

Am J Physiol Endocrinol Metab 278:E941-948, 2000.

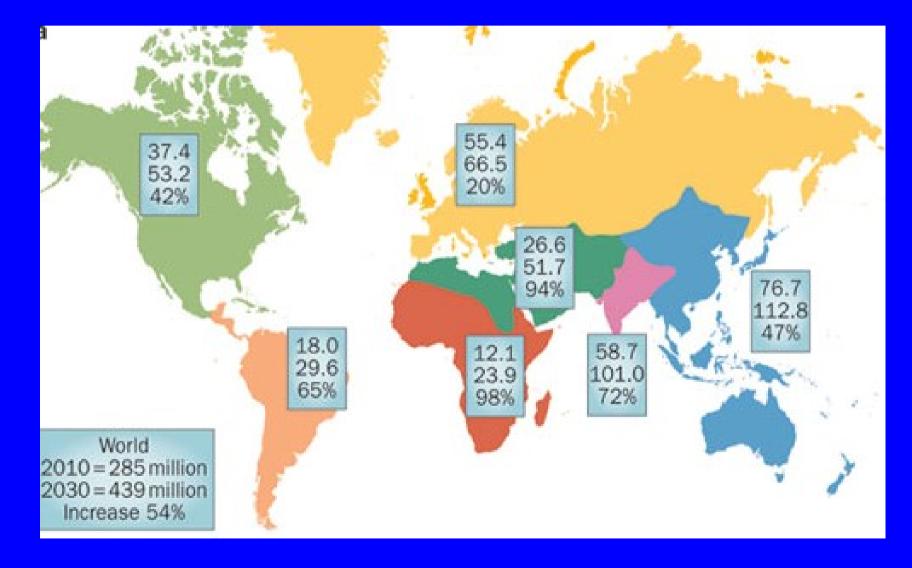

| Patient   | Superficial | Deep | Visceral |
|-----------|-------------|------|----------|
| A = lean  | 144         | 126  | 84       |
| B = obese | 141         | 273  | 153      |

#### Prevalence of Abdominal Obesity in Spanish Adults by Educational Levels 2008-2010

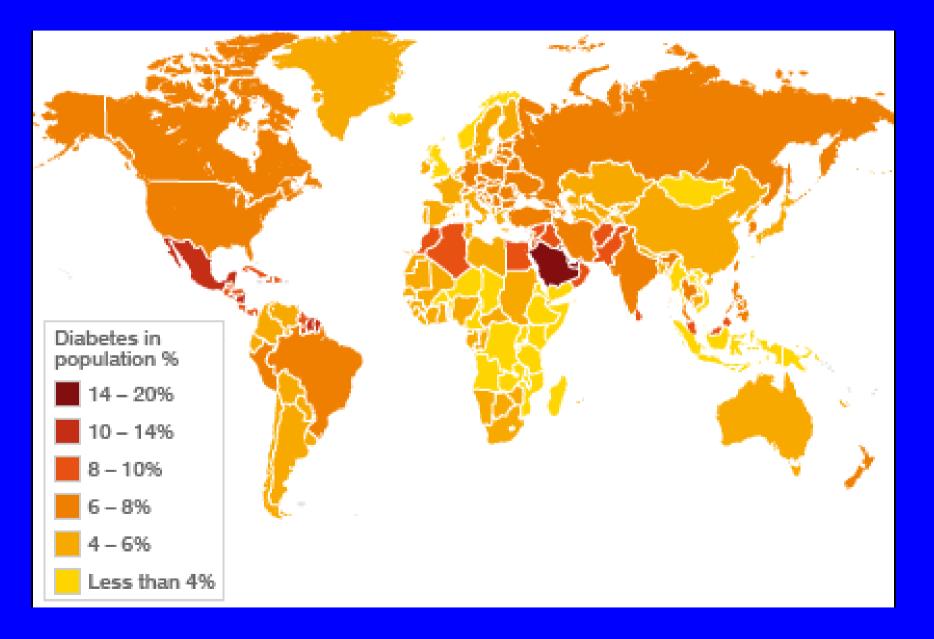
Obesity Reviews (2012) 13, 388–392



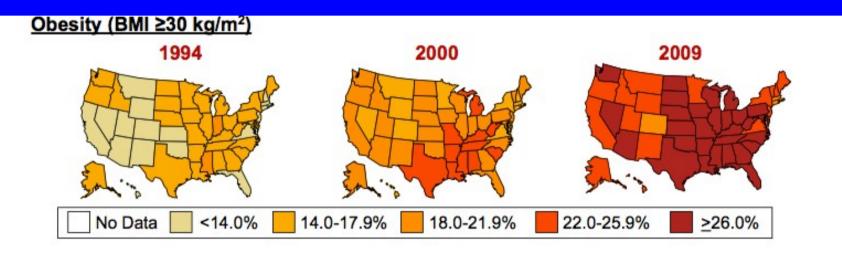
#### Weight categories in HIV+ US Navy personnel

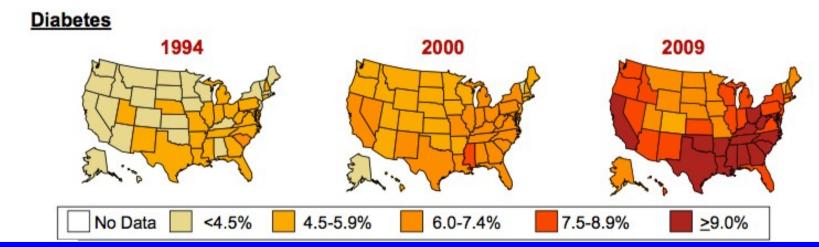



Crum-Cianflone N, et al (2010) PLoS ONE 5: e10106


#### Body Mass Index (BMI) in HIV+ and HIV-American Women

| BM               | HIV - N=573 | %               | HIV+<br>N=1 208 | %               |
|------------------|-------------|-----------------|-----------------|-----------------|
| Low <1 8.5       | 11          | 1.9             | 3               | 0.25            |
| Normal 18.5-4    | 135         | 23              | 411             | 34              |
| Overweight 25-30 | 152         | <mark>27</mark> | 347             | <mark>29</mark> |
| Obese >30        | 251         | <mark>44</mark> | 371             | <mark>31</mark> |


#### Increased Global Absolute Prevalence of Diabetes from 2010 to 2030

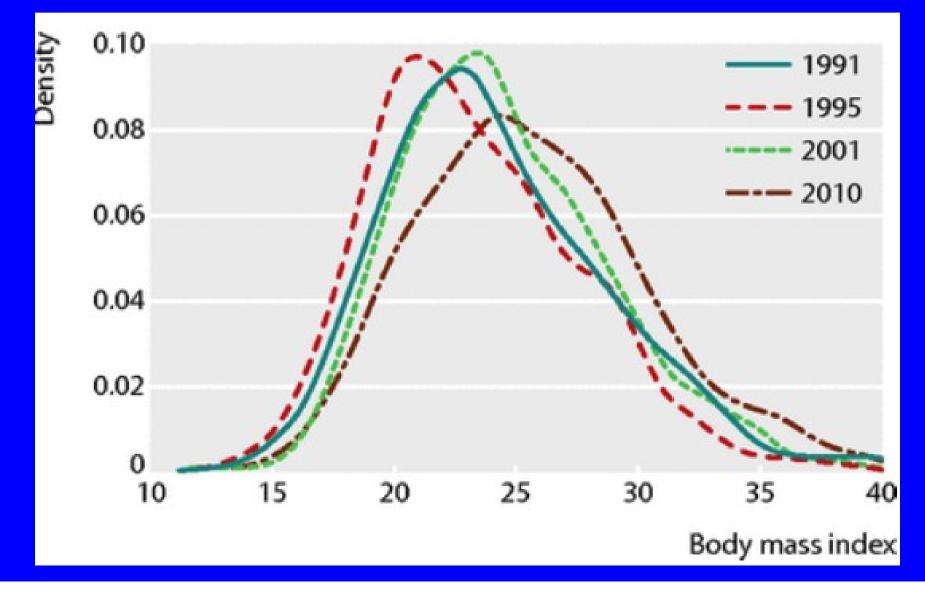



#### **Global Projected Diabetes Prevalence (ages 20-79) in 2030**



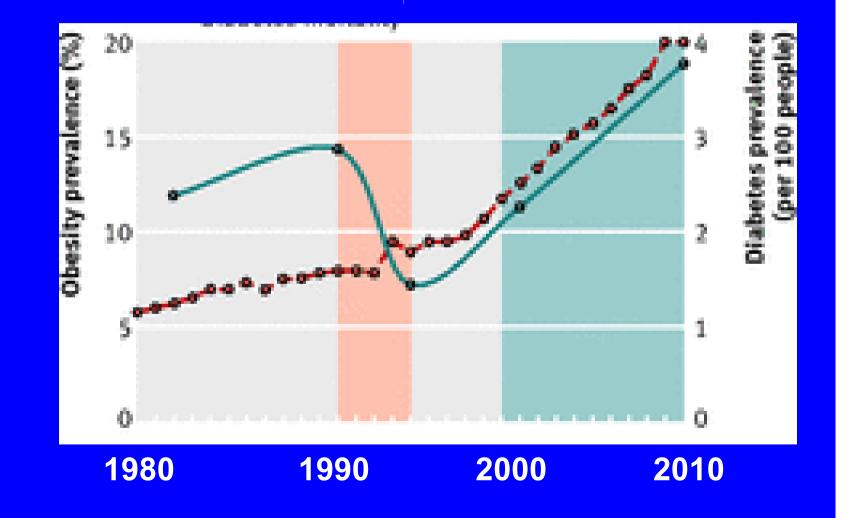
## Prevalence of Obesity and Diabetes in the US Adults 1994 to 2009





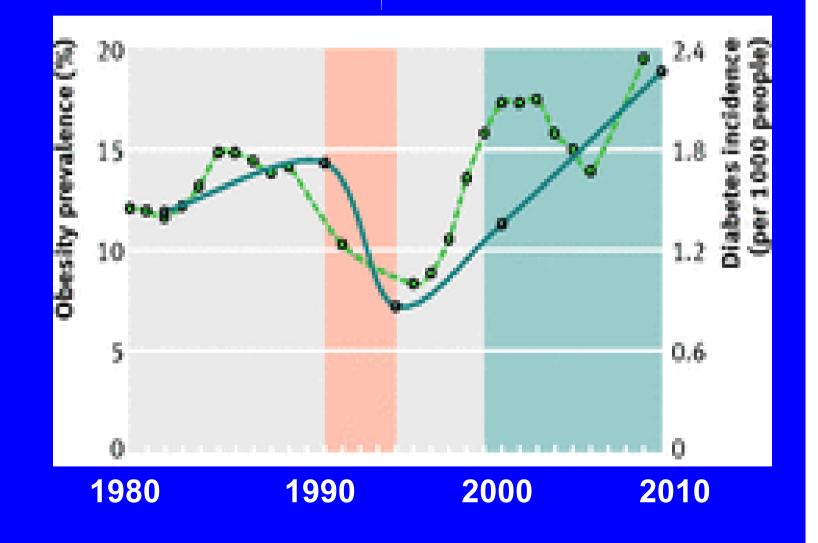

# Has the obesity epidemic caused the diabetes epidemic?

Population-wide weight loss and regain in relation to diabetes burden in Cuba 1980-2010: repeated cross sectional surveys and ecological comparison of secular trends *Franco, M et al BMJ* 2013


- Design: Repeated cross sectional surveys and ecological comparison of secular trends.
- Setting: Cuban province of Cienfuegos from 1991, 1995, 2001 in representative samples of 1657, 1351, 1667, and 1492 adults.
- Economic recession following loss of Soviet support (1990-1995) with decreased availability of food and documented population-wide weight loss.

# Weight distributions in Cuba caused by economic reversals in 1991-95




#### **Diabetes prevalence** followed obesity prevalence

Obesity prevalence
Diabetes prevalence
Diabetes incidence



#### **Diabetes incidence** followed obesity prevalence

Obesity prevalence
Diabetes prevalence
Diabetes incidence



#### Conclusions

- During periods of population-wide loss followed by gain in weight in Cuba, the incidence and prevalence of diabetes closely followed the prevalence of obesity.
- This ecological study supports that hypothesis that the obesity epidemic is a major factor causing the diabetes epidemic.

# How are diabetes and obesity related to neurocognitive impairment (NCI)?

#### In HIV-uninfected persons,

- Diabetes, BMI and central obesity (WC or WHR) all correlate with:
  - » Prevalence of NCI in cross sectional studies
  - » Incidence of NCI in longitudinal studies
- Diabetes is consistently associated with NCI and cortical atrophy in MRI.
- In statistical models, central obesity is better than BMI in predicting NCI.

#### Since obesity and diabetes contribute to NCI in HIV-<u>un</u>infected persons, do they contribute to NCI in HIV-infected patients?

Role of Obesity, Metabolic Variables, and Diabetes in HIV-Associated Neurocognitive Disorder (HAND) J. Allen McCutchan, M.D., M.Sc.<sup>1</sup>, Jennifer A. Marquie-Beck, M.P.H.<sup>1</sup>, Chelsea A. FitzSimons, M.P.H<sup>1</sup>, Scott L. Letendre, M.D.<sup>1</sup>, Ronald J. Ellis, M.D., Ph.D.<sup>1</sup>, Robert K. Heaton, Ph.D.<sup>1</sup>,...Igor Grant, MD and the CHARTER Group *Neurology* 2012

#### **Objective**

To examine the relationship between HAND and metabolic variables in HIV+ participants in CHARTER, an observational, multicenter cohort study of patients on HAART.

## Methods

- In a cross-sectional study 130 HIV+ CHARTER participants
- Neurocognitive impairment (NCI) was defined by performance on neuropsychological tests adjusting for age, education, gender and race/ethnicity.
- Global ratings and global deficit scores (GDS) were determined by standardized demographically corrected tests.

## Methods

- Demographics, biomarkers of HIV disease, metabolic variables, anthropomorphic measures, CART history, other drug exposures, and self reported diabetes were collected.
- Multivariate models predicted NCI using variables that are selected for best overall goodness of fit criteria in two subgroups limited by availability of measures of obesity:
  - » Model 1- Body Mass Index (BMI) alone, n=90
  - » Model 2- BMI and waist circumference (WC), n=55

#### **Results: Impaired versus unimpaired**

|                                                   | Metabolic     | Impaired      | Unimpaired    | p-      |
|---------------------------------------------------|---------------|---------------|---------------|---------|
|                                                   | Group (n=130) | (n=52)        | (n=78)        | value # |
| Demographic Characteristics                       |               |               |               |         |
| *Age, years <sup>1</sup>                          | 46.2 (8.8)    | 48.3 (7.5)    | 44.9 (9.4)    | 0.02    |
| *Gender, Male <sup>2</sup>                        | 113 (87%)     | 45 (87%)      | 68 (87%)      | 0.92    |
| *Ethnicity, White <sup>2</sup>                    | 74 (57%)      | 35 (67%)      | 39 (50%)      | 0.07    |
| Education, years <sup>1</sup>                     | 13.1 (2.6)    | 13 (2.4)      | 13 (2.8)      | 0.68    |
| HV Disease Status                                 |               |               |               |         |
| *AIDS diagnosis <sup>2</sup>                      | 91 (70%)      | 41 (79%)      | 50 (64%)      | 0.08    |
| *Duration of HIV Infection: years <sup>1</sup>    | 13 (6.5)      | 14.5 (6.0)    | 12.0 (6.7)    | 0.03    |
| *Current CD4 <sup>3</sup> : cells/mm <sup>3</sup> | 501 (305-708) | 556 (326-757) | 458 (305-669) | 0.09    |
| *Nadir CD4 <sup>3</sup> : cells/mm <sup>3</sup>   | 120 (50-250)  | 101 (50-217)  | 175 (58-254)  | 0.20    |
| Plasma viral load                                 |               |               |               |         |
| c/mL (log <sub>10</sub> ) <sup>3</sup>            | 1.7 (1.7-2.4) | 1.7 (1.7-2.1) | 1.7 (1.7-2.4) | 0.51    |
| *Detectable <sup>2</sup>                          | 40 (35%)      | 16 (33%)      | 24 (36%)      | 0.84    |
| CSF viral load (n=99)                             |               |               |               |         |
| c/mL (log <sub>10</sub> ) <sup>3</sup>            | 1.7 (1.7-1.7) | 1.7 (1.7-1.7) | 1.7 (1.7-1.7) | 0.65    |
| Detectable <sup>2</sup>                           | 15 (17%)      | 6 (15%)       | 9 (18%)       | 0.78    |
| Antiretroviral Characteristics                    |               |               |               |         |
| *ARV status <sup>2</sup>                          |               |               |               | 0.90    |
| Currently on                                      | 107 (82%)     | 43 (83%)      | 64 (82%)      |         |
| Past use only                                     | 14 (11%)      | 6 (12%)       | 8 (10%)       |         |
| ARV naïve                                         | 9 (7%)        | 3 (6%)        | 6 (8%)        |         |
| Duration of current regimen, mths <sup>3</sup>    | 21 (13-40)    | 23 (14-46)    | 21 (11-38)    | 0.57    |

## **Results:**

#### BMI and WC are highly correlated (rho = .79) and WC increases NCI at all levels of BMIs

140 Normal NCI 120 Circumference 100 8 Rho = .7920 25 30 35 40

Waist

(cm)

**Body Mass Index** 

## **Results: Multiple Regression Analysis**

Model 1: Multivariate regression based on AIC to model NCI as a function of demographic, medical and metabolic predictors of interest including BMI (n=90)

| Variable | Odds Ratio | 95% CI     | p-value |
|----------|------------|------------|---------|
| Age      | 1.06       | 1.01, 1.12 | 0.027   |
| Diabetes | 6.08       | 0.61, 60.7 | 0.12    |
| BMI      | 1.12       | 1.01, 1.24 | 0.039   |
|          |            |            |         |

Model 2:. Multivariate Regressions based on AIC to model NCI as a function of demographic, medical and metabolic predictors of interest including BMI and average mid waist circumference (n=55)

| Variable              | Odds Ratio | 95% CI     | p-va lue |
|-----------------------|------------|------------|----------|
| AIDS                  | 49.57      | 2.26, 1089 | 0.013    |
| Diabetes              | 17.6       | 0.76, 409  | 0.07     |
| BMI                   | 0.69       | 0.49, 0.98 | 0.038    |
| WC                    | 1.34       | 1.13, 1.60 | 0.001    |
| <b>Triglyce rides</b> | 0.32       | 0.09, 1.21 | 0.09     |

AIC= Aka ike Information Criterion

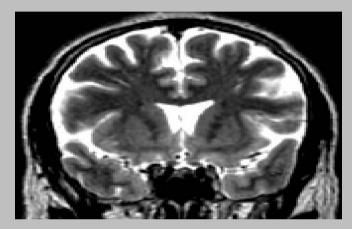
NCI= Neurocognitive impairment

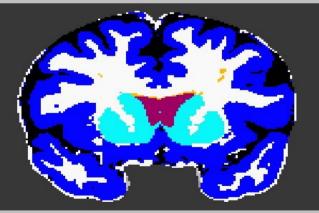
## **Summary of Results**

- NCI (global impairment rating ≥ 5) was diagnosed in 40%.
- In univariate analyses, NCI was associated with:
  - » age,
  - » longer duration of HIV infection,
  - » central obesity (waist circumference (WC), but not general obesity (BMI),
  - » Diabetes: self-reported diabetes was also associated with NCI in those aged >55 years in the CHARTER cohort with n=1325.
- Multivariate logistic regression analyses using BMI alone and BMI plus WC demonstrated that only central obesity independently increased risk of NCI.

#### Conclusions

- As in HIV-<u>un</u>infected persons, either BMI or WC increases the risk of NCI in HIV+ persons.
- When both BMI and WC are in the model, the effect of BMI is reversed, ie it protects from NCI.
- Diabetes increased risk of NCI most clearly in older (> 55 years) HIV-infected persons.
- Reduction of central adiposity might protect from or help to reverse neurocognitive impairment in HIV-infected persons.


Neuroimaging Morphometric Correlates of Metabolic Variables in HIV: The CHARTER Study


> Sarah L. Archibald, Christine Fennema-Notestine, J. Allen McCutchan, et al In preparation

### Metabolic Characteristics of 223 participants

| Metabolic Factor           | Mean (stdev.) |
|----------------------------|---------------|
| BMI (kg/m²)                | 25.9 (4.5)    |
| C-LDL (mM)                 | 99.9 (35.4)   |
| C-HDL (mM)                 | 48.7 (20.6)   |
| Systolic BP (mm Hg)        | 125.3 (15.2)  |
| Diastolic BP (mm Hg)       | 76.4 (10.8)   |
| Blood glucose (mM)         | 95.8 (24.1)   |
| Diabetes (prevalence in %) | 7.2           |

### **Imaging Protocol and Analysis**







- Ventricular CSF
- Subarachnoid CSF
- ••Abnormal White
- Total White Matter
- ••CortexCortex
  - Subcortical Gray

## **Statistical Analyses**

- Multivariate regression models to predict each brain volume from each metabolic factor:
  - » Control: age, gender, ethnicity, education, scanner/site, cranial vault, Current CD4, CD4 nadir
  - » Metabolic variables: BMI, TC, LDL-C, HDL-C, blood pressure (diastolic and systolic), blood glucose level and diabetes
- <u>Regression model to predict each metabolic variable</u> <u>from CD4 change</u>
  - » Control: age, gender, ethnicity, education, site, CD4nadir, vault
  - » Immune response: CD4 change (current six months prior)

#### **Results: Regression Analyses**

| n=223        | Abnormal<br>White Matter |      | Total White<br>Matter |       | Cortical Gray<br>Matter |        | Subcortical<br>Gray Matter |      | Ventricular<br>Fluid |      | Sulcal Fluid |      |
|--------------|--------------------------|------|-----------------------|-------|-------------------------|--------|----------------------------|------|----------------------|------|--------------|------|
|              | t ratio                  | р    | t ratio               | o p   | t ratio                 | р      | t ratio                    | p    | t ratio              | p    | t ratio      | р    |
| BMI          | -0.90                    | .367 | 4.25                  | .0001 | -4.10                   | <.0001 | -0.52                      | .604 | -1.43                | .155 | -0.65        | .518 |
| BMI (m)      | -0.90                    | .368 | 3.76                  | .0002 | -4.16                   | <.0001 | -0.43                      | .670 | -1.55                | .123 | -0.08        | .933 |
| HDL-C        | 0.20                     | .838 | -1.61                 | .109  | -1.31                   | .193   | -1.97                      | .050 | 1.57                 | .118 | 2.45         | .015 |
| HDL-C (m)    | -0.21                    | .830 | -1.50                 | .136  | -1.68                   | .095   | -1.95                      | .052 | 2.01                 | .046 | 2.41         | .017 |
| LDL-C        | -0.15                    | .878 | 2.54                  | .012  | -1.33                   | .184   | -1.05                      | .295 | -0.17                | .866 | -1.68        | .094 |
| LDL-C (m)    | -0.09                    | .930 | 1.67                  | .096  | -0.44                   | .660   | -0.96                      | .340 | 0.17                 | .865 | -1.59        | .113 |
| Cholesterol  | 0.11                     | .914 | 1.26                  | .210  | -2.26                   | .025   | -1.83                      | .068 | 1.20                 | .233 | 0.34         | .734 |
| Glucose      | 2.71                     | .007 | -0.27                 | .789  | -0.02                   | .981   | -0.57                      | .572 | 1.33                 | .186 | 0.71         | .479 |
| Glucose (m)  | 1.91                     | .058 | 0.06                  | .951  | -0.01                   | .994   | -0.12                      | .907 | 0.25                 | .800 | 0.51         | .609 |
| Diabetes     | 2.33                     | .021 | 1.13                  | .258  | -0.68                   | .500   | 0.65                       | .515 | -2.42                | .016 | -0.58        | .562 |
| Diabetes (m) | 1.39                     | .168 | 1.72                  | .086  | -0.87                   | .384   | 0.71                       | .480 | -2.51                | .013 | -0.54        | .593 |

Control variables include scanner, age, ethnicity, CD4 nadir, and cranial vault Multi-metabolic model (m) includes BMI, HDL-C, LDL-C, Glucose, Diabetes

#### **Results: Univariate analysis**

Examining each metabolic variable separately to predict brain volumes

- 1. Greater BMI was associated with smaller cortex and larger white matter
- 2. Hyperglycemia or diabetes was associated with abnormal white matter
- 3. Blood pressure was not related to any of the brain volume or density measures.

#### **Results: Multivariate Analysis**

Examining combined effects of metabolic variables found:

- similar correlations to the univariate analysis suggesting these effects have distinct mechanisms
- 2. CD4 change over 6 months (? reflecting IRIS) was not associated with metabolic variables

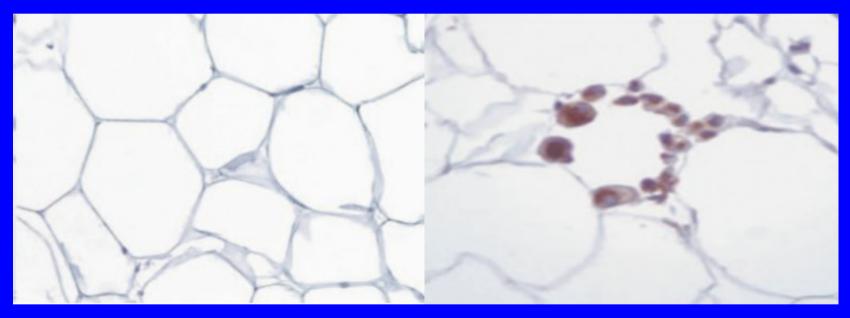
## Summary

- 1) Elevated BMI, total cholesterol, glucose, and diabetes correlated with altered gray and white matter volumes in HIV-infected patients on HAART.
- 2) Glucose dysregulation (hyperglycemia and diabetes) was associated with white matter enlargement and more abnormal signal suggesting edema in white matter.
- 3) Presumed WM edema could be caused by several mechanisms:
  - 1) Cerebral macro- or micro-vascular disease
  - 2) Hyperglycemia or insulin resistance
  - 3) Neural toxicity of ART

#### **Conclusions and Implications**

Clarification of the causal mechanisms of the combined effects of HIV and metabolic variables on brain structure could lead to targeted interventions.

We hypothesized that pro-inflammatory cytokines generated in inflamed central fat could mediate the brain damage that causes NCI.

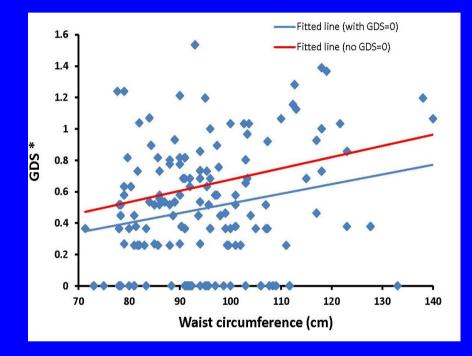

## Mechanisms: Obesity and Inflammation

- Central obesity leads to invasion of the deep subcutaneous and visceral adipose tissues by activated macrophages that form "crown-like structures" (CLS) around adipocytes.
- Fred Sattler (USC), Scott Letendre (UCSD), and I have measured selected cytokines in 130 CHARTER patients and found that interleukin 6 (IL-6), a pro-inflammatory cytokine appeared to mediate the relationship of central obesity to NCI.

#### Obesity and adipose tissue inflammationinflammation

#### **Normal Fat**

Inflammed fat with crownlike structures CLS = M1)



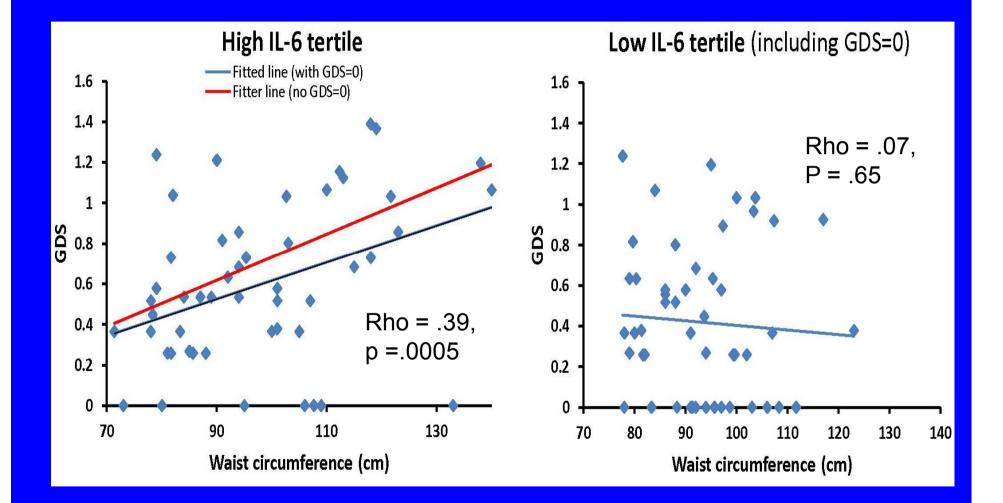

 M2: "Alternatively Activated" Anti-inflammatory
(IL-4, IL-13, PPARγ and PPARα)

M1: "Classically Activated" Pro-inflammatory (LPS, IFNγ, FFA stimulation TLR4)

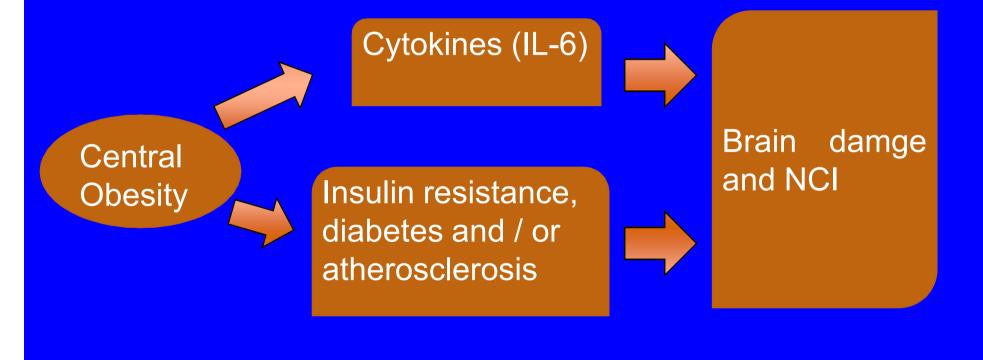
Apovian 2008; Lumeng, 2008

## Both waist circumference and IL-6 increase with higher GDS (NCI)




|                  |         |       | Fitt   | ed line (wi | ith GDS=0   | )   |
|------------------|---------|-------|--------|-------------|-------------|-----|
| <sup>1.6</sup> ] |         | ٠     |        | ed line (no | GDS=0)      |     |
| 1.4 -            |         |       |        |             | ٠           |     |
| 1.2 -            |         | •     | • •    |             | ٠           |     |
| 1 -              |         |       | •* •   | •           |             |     |
| S 0.8 -          | •       |       | **     |             | •           | _   |
| 0.6 -            |         |       | 3 - 50 | -           |             |     |
| 0.4 -            |         | ***** |        | •           | ٠           | •   |
| 0.2 -            | • • • • |       | ~ ~ ~  |             |             |     |
| o                |         |       |        | •           | <b>◆-</b> ◆ |     |
| -1               | -0.5 0  | 0.5   | 1      | 1.5         | 2           | 2.5 |
|                  |         | log   | L-6    |             |             |     |

|               | rho  | P value |
|---------------|------|---------|
| WC with n=152 | 0.21 | 0.009   |
| WC w/o GDS=0  | 0.31 | 0.0006  |


|                 | rho  | P value |
|-----------------|------|---------|
| IL-6 with n=152 | 0.17 | 0.04    |
| IL-6 w/o GDS=0  | 0.18 | 0.055   |

\* Square root of Global Deficit Score

# WC correlates with GDS only in those with the highest tertile (1/3) of blood IL-6 levels



## Proposed mechanism for effects of central obesity on NCI



#### **Overall Conclusions**

- HIV+ populations have elevated levels of NCI and aging will expose them to added risk from diabetes and obesity.
- Thus, combined effects of these 3 common, global, epidemic diseases (HIV, obesity, and diabetes) will contribute to an increasing prevalence of HAND and its consequences.
- Therapy for this mechanism of HAND might target:
  - » <u>Reducing generalized and central obesity (eg,</u> exercise, tesamorlin (growth hormone releasing factor agonist), or bariatric surgery), or
  - » Anti-inflammatory drugs (eg, NSAIDs)

## Support

Supported by NIH contracts N01 MH22005, HHSN271201000027C and HHSN271201000030C (CHARTER; PI: I. Grant)) and by NIH grant MH79752 (PI: T. Jernigan).